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Abstract

We analyze the impact of risk aversion and ambiguity aversion on the

competing demands for annuities and bequeathable savings using a lifecycle

recursive utility model. Our main finding is that risk aversion and ambi-

guity aversion have similar effects: an increase in either of the two reduces

annuity demand and enhances bond holdings. We obtain this unequivocal

result in the flexible intertemporal framework of Hayashi and Miao (2011)

by assuming that the agent’s preferences are monotone with respect to first-

order stochastic dominance. Our contribution is then twofold. First, from

a decision-theoretic point of view, we show that monotonicity allows one

to obtain clear-cut results about the respective roles of risk and ambigu-

ity aversion. Second, from the insurance point of view, our result that the

demand for annuities decreases with risk and ambiguity aversion stands in

contrast with what is usually found with other insurance products. As such,

it may help explain the low annuitization level observed in the data.
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1 Introduction

Risk aversion and ambiguity aversion are two central behavioral traits affecting

economic lifecycle problems, such as saving and portfolio choices. A natural ques-

tion is whether ambiguity and risk aversion have different impacts, or whether

they generate qualitatively similar effects, especially when they are considered si-

multaneously. Although these traits appear to have certain similarities, with both

traits aiming to model attitudes towards (objective or subjective) uncertainty, they

have generally been studied in two separate strands of the economic literature. As

pointed out in Guetlein (2016), the reason for the lack of joint analysis is that

doing this is complicated and may in general lead to non-clear-cut results. Some

insights have been given in static setups for self-insurance and self-protection ques-

tions (see among others, Treich 2010, Snow 2011, and Alary et al. 2013), for the

value of information (e.g., Hoy et al. 2014), and for portfolio choice problems (see

e.g., Dow and Werlang 1992, Gollier 2011). However, the question has never really

been theoretically addressed in intertemporal problems.

In this paper, we succeed in deriving non-ambiguous results regarding the joint

role of risk and ambiguity aversion in a lifecycle model. A lifecycle model with

uncertain lifetime is a natural workhorse for such an analysis. Not only is mor-

tality a large risk in life, but life expectancies are also highly heterogeneous, as

measured by so-called life disparity. Furthermore, even if life disparity can be

partly explained by socio-economic factors, or differences in health systems, signif-

icant unexplained factors remain (Shkolnikov et al. 2003, Edwards and Tuljapurkar

2005, or Shkolnikov et al. 2011). Mortality can therefore be seen as both risky and

ambiguous.

Our results indicate that the demand for annuities decreases with both am-

biguity and risk aversion, while the demand for (bequeathable) savings increases.

The underlying intuition is that annuities are financial products that pay only

when the agent survives, that is in good states of the world, while savings pay

independently of the agent’s survival. Thus, investing in annuities can be seen as

a bet on the agent’s own survival, with positive pay-offs in good states, but no

pay-off in bad states. Quite logically, we find that the willingness to take such

bets is reduced by both risk and ambiguity aversion. These findings have several
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interesting implications. First, they highlight that annuities, which are often pre-

sented as an insurance against the “risk” of having a long life, also imply the risk of

losing wealth in the case of an early death. When living long is seen as a favorable

outcome, annuities then appear to be a risk-taking device (when mortality rates

are fully predictable), or an uncertainty-taking device (when survival probabilities

are ambiguous). This stands in stark contrast with usual insurance products, such

as car, health or unemployment insurance, and leads to opposite results regarding

the impact of risk aversion and ambiguity aversion. The second implication of

our results is that, qualitatively speaking, risk and ambiguity aversion turn out to

have similar impacts. What fundamentally matters is not whether probabilities

are known (as in a risk setting) or unknown (as in an ambiguity setting) but more

fundamentally the possibility of either adverse realizations (like an early death) or

favorable outcomes (like a long life). Risk and ambiguity aversion, though formally

different, both reflect a similar willingness to “transfer” welfare from good states

of the world to bad states of the world.

To derive our results, we focus on a smooth ambiguity model à la Hayashi

and Miao (2011), which nests some standard models such as that of Klibanoff

et al. (2009) or the recursive specification of Epstein and Zin (1989). We analyze

the saving decisions of an agent who is both ambiguity and risk averse, and who

may invest both in risk-free bonds and in annuities. Mortality is the sole risk

faced by the agent, and she can live at most for two periods. The key feature

of our approach is that we additionally assume that the agent’s preferences are

monotone with respect to first-order stochastic dominance. This property enables

us to jointly characterize the respective roles of ambiguity and risk aversion.

What does the monotonicity property imply? In a nutshell, monotonicity pre-

vents agents from opting for dominated choices. More precisely, if two choices

are available, with the first one yielding preferred outcomes in all circumstances,

then an agent with monotone preferences will always prefer the first choice to the

second. This property has already been studied in a risk setting. Bommier et al.

(2017) show that the only Kreps and Porteus (1978) monotone preferences able

to disentangle risk aversion and intertemporal elasticity of substitution are the so-

called risk-sensitive preferences introduced by Hansen and Sargent (1995). These
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preferences have proved to be useful for characterizing the role of risk aversion for

various consumption-saving problems. For instance, in a general infinite-horizon

setting, Bommier and LeGrand (2019) show that once monotonicity is imposed,

risk aversion unambiguously increases precautionary savings.

While the impact of monotonicity has already been explored in a risk setting,

we are not aware of any extension to an uncertainty setting, apart from the repre-

sentation results provided in Bommier and LeGrand (2014a) and Bommier et al.

(2017). In particular, no application has been developed, leaving the practical

implications of using monotone preferences in an ambiguity setting unclear. The

current paper fills this gap, showing that monotone preferences can be used to

derive clear-cut and intuitive predictions regarding the impact of risk and ambi-

guity aversion on savings and annuity purchases. As already mentioned, we find

that greater risk aversion or greater ambiguity aversion tends to reduce annu-

ity purchases and enhance investments in bonds. To be fully precise, we prove

that a higher ambiguity aversion, while maintaining risk aversion constant, leads

to higher holdings of riskless bonds but smaller holdings of annuities. This result

holds for interior solutions, where agents purchase positive quantities of bonds and

annuities. We also derive slightly different results for corner solutions, where ei-

ther annuity or bond holdings hit non-negativity constraints and are equal to zero.

With respect to risk aversion, an increase in risk aversion in the sense introduced

by Guetlein (2016) – which does not preserve ambiguity attitudes – typically leads

to non-clear-cut results. However, a compensated or “net” change in risk aversion,

where the ambiguity parameter is modified together with the risk aversion param-

eter so as to keep ambiguity attitudes unchanged, is shown to have unambiguous

implications, with an impact on asset demands similar to that of an increase in

ambiguity aversion. Overall, uncertainty aversion (be it greater risk aversion or

greater ambiguity aversion) appears to be a natural candidate for explaining the

low annuitization level observed in the data (see Johnson et al. 2004 for empirical

evidence in the US). This confirms the early findings of Bommier and LeGrand

(2014b), who examined risk aversion, and those of d’Albis and Thibault (2018),

who focused on ambiguity aversion in a static, one-period model.

To the best of our knowledge, this is the first paper to derive clear-cut results
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regarding the joint impact of risk and ambiguity aversion in an intertemporal

framework. Our article obviously connects to the literature that discusses the roles

of risk and ambiguity aversion separately. In the risk setting, there is an abundant

literature on precautionary savings (see, among others, Drèze and Modigliani 1972,

Kimball 1990, Bleichrodt and Eeckhoudt 2005, Courbage and Rey 2007, Kimball

and Weil 2009, Jouini et al. 2013, Nocetti 2016) and on annuity choices (Yaari 1965,

Davidoff et al. 2005, Lockwood 2012, Pashchenko 2013, among many others). The

role of risk aversion is, however, not often studied because most of the literature

relies on the standard time-additive setup, which makes it impossible to isolate

the role of risk aversion, since intertemporal elasticity of substitution and risk

aversion are intertwined. Among the exceptions, we find papers that use recursive

frameworks, such as van der Ploeg (1993), Weil (1993), Kimball and Weil (2009),

and several others. Nevertheless, most of these contributions rely on non-monotone

preferences (notably those using the most popular Epstein-Zin specification with

an intertemporal elasticity of substitution different from 1), with recursivity and

monotonicity being combined in very few papers, including van der Ploeg (1993),

Tallarini (2000) and Bommier and LeGrand (2014b, 2019). None of these articles

feature ambiguity aversion.

The literature on ambiguity aversion developed after that on risk aversion,

but grew very rapidly.1 Most theoretical and experimental contributions initially

focused on static settings. Intertemporal problems in an ambiguity setting are

typically addressed using recursive extensions of standard static ambiguity mod-

els, though without having enough flexibility to change both risk and ambiguity

aversion. We note, among others, the analyses of Osaki and Schlesinger (2014),

Berger (2014), and Kajii and Xue (2016), who examine the precautionary savings

of ambiguity-averse agents, or the study of Collard et al. (2018), who investigate

whether ambiguity aversion can explain historical values of the equity premium.

All of these papers focus on ambiguity aversion, while restricting their analyses

to models that reduce to the standard time-additive model when uncertainty is

purely objective (in cases where there is no ambiguity). In other words, they re-

tain the lack of flexibility of the standard time-additive model, which makes it
1See for example the seminal early review of Camerer and Weber (1992).
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impossible to explore the role of risk aversion. An exception is Peter (2019), who

considers a more flexible framework, relying on a non-separable, two-period utility

function, although the author does not investigate the role of risk aversion. The

current paper introduces flexibility by using the recursive framework of Hayashi

and Miao (2011), a route also followed by more quantitatively oriented papers

(see e.g., Backus et al. 2015). Our contribution is notable for its use of mono-

tone preferences, which in addition to being an intuitive assumption, affords great

tractability and the ability to derive formal results.

2 Risk and ambiguity aversions in intertemporal

frameworks

2.1 The recursive smooth ambiguity model

To study the effect of risk and ambiguity aversion on the optimal decisions of

an agent who faces an ambiguous mortality risk, we adopt the recursive smooth

ambiguity utility model axiomatized by Hayashi and Miao (2011), in which Seo’s

(2009) construction of a static smooth ambiguity model using Anscombe and Au-

mann (1963) acts is embedded into an infinite horizon setting.

Let Ω be the finite state space and let X be the set of consequences. The

set of Anscombe-Aumann acts is G0 ≡
(
∆ (X )

)Ω, where ∆ (X ) denotes the set of

Borel probability measures defined on the Borel subsets of X . We refer to Hayashi

(2005) for the formal construction of the domain of compound lottery-acts, which

are defined as the subset of dynamically coherent acts in the product space ∏∞t=0 Gt,

where the spaces Gt are defined by the recursion Gt =
(
∆ (X × Gt−1)

)Ω.
The representation result of Hayashi and Miao (2011) states that the following

exist: an aggregator W : X × R → R, continuous and increasing in its second

argument; two continuous and strictly increasing functions ψA, ψR : R → R; and

a probability measure µ ∈ ∆
(
∆ (Ω)

)
over the set of objective distributions, such
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that the utility of (x, g) ∈ X × G is given by:

V (x, g) = W

x, ψ−1
A

(∫
∆(Ω)

ψA ◦ ψ−1
R

(∑
ω∈Ω π (ω) (1)

×
∫
C×G

ψR
(
V (x′, g′)

)
g (ω) (dc′, dg′)

)
µ(dπ)


 .

Preferences exhibit ambiguity aversion if ψA ◦ ψ−1
R is concave.

2.2 Monotone preferences

For our analysis, we will additionally require preferences to be monotone with

respect to first order stochastic dominance. Loosely speaking, a monotonicity

property means that if an agent prefers the outcomes of a given action to those of

another action in all states of the world, she should always prefer the former action

to the latter. This property is a consistency requirement between preferences over

deterministic outcomes, subjective beliefs, and preferences in the presence of risk

and ambiguity.

Monotonicity has already been analyzed in risk settings. It has straightforward

implications for saving behaviors. Consider, for instance, an agent who is likely

to live for one or two periods. With monotone preferences, her savings in the

presence of mortality risk will be bound by her savings when she is sure to live for

either one or two periods. These savings will, in particular, be smaller than her

savings when she is sure to live for two periods. With non-monotone preferences,

and for certain parameterizations, the agent is likely to save more in the presence

of mortality risk than she would save knowing that she is sure to live for two

periods.2 Aside from this implication regarding saving behaviors, monotonicity

imposes strong restrictions on preference representations, as shown in Bommier

et al. (2017). This latter contribution shows, in particular, that risk-sensitive

preferences are the only Kreps and Porteus (1978) monotone preferences able to

disentangle risk aversion and the elasticity of intertemporal substitution.3 Because

of monotonicity, these preferences may yield clear-cut insights into the role of risk
2See Bommier et al. (2021) for a detailed example.
3Strzalecki (2011) and Baillon et al. (2017) also axiomatize risk-sensitive preferences but in a

static setting.
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aversion.

In the setting of Hayashi and Miao (2011), monotonicity requires the represen-

tation in (1) to have an affine aggregator W and functions ψR and ψA to be of the

“constant absolute risk aversion” kind. See Bommier and LeGrand (2014a) for a

formal proof. The specification (1) can then be written as:

V (x, g) = f(x)− β

kA
log
∫

∆(Ω)
exp

(
kA
kR

log
(∑

ω∈Ω π (ω) e−kRV
))

µ(dπ)
 , (2)

where f : X → R+ is the instantaneous utility function. The parameters kA
and kR drive ambiguity and risk aversion. Formally, two agents are comparable

in terms of ambiguity aversion if they differ only by the parameter kA, the agent

with greater kA being more ambiguity averse. Two agents are comparable in terms

of risk aversion if they differ only by the parameter kR, the agent with greater kR
being more risk averse. It is therefore natural to refer to kA as being the ambiguity-

aversion parameter, and to kR as being the risk-aversion parameter.

However, as emphasized by Guetlein (2016), the smooth model does not offer

a straightforward separation between ambiguity and risk attitudes. In particular,

whether the agent is ambiguity averse or ambiguity lover depends on whether the

ratio kA

kR
is greater or smaller than one. Ambiguity neutrality is obtained when

this ratio is equal to one. It follows that increasing the risk aversion parameter kR
while keeping kA constant will change ambiguity attitudes. For example, an agent

who is more risk averse than an agent who is ambiguity neutral will necessarily be

ambiguity lover (see discussion in Section II of Guetlein).

To avoid such shortcomings, Guetlein (2016) suggests considering a simultane-

ous increase in both risk and ambiguity aversion that leaves ambiguity attitudes

unchanged (see Section III of her paper). In the general framework of Guetlein

(2016), such joint increases can be rather complex, involving different transforma-

tions of the risk-aversion and ambiguity-aversion functions. Under the assump-

tion of preference monotonicity considered in the current paper, the situation is,

however, much simpler. Increasing uncertainty aversion – to use Guetlein’s termi-

nology – while preserving ambiguity attitudes is obtained by increasing both kA

and kR, while keeping the ratio kA

kR
constant. To avoid confusion, we will introduce
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the terminology “net” vs. “gross” to distinguish two possible forms of the increase

in risk aversion. By definition, an increase in “gross risk aversion” involves in-

creasing kR while keeping kA constant. An increase in “net risk aversion” involves

increasing kA and kR, while keeping the ratio kA

kR
unchanged, so as to preserve

ambiguity attitudes. Here, the adjective “net” refers to an approach where risk

aversion would be defined residually by looking at the difference (in fact the ratio

here) between uncertainty aversion and ambiguity aversion.

3 Results in a two-period framework

3.1 Preference specifications

We use the above setting to study the effect of risk and ambiguity aversion on the

optimal annuitization of an agent who faces an ambiguous mortality risk.

There are two periods, indexed by t = 1, 2. The agent is alive in the first

period, and can be either dead or alive in the second period. When alive, the agent

consumes, when dead she may bequeath wealth to her heirs. The formal connection

between our two-period setting and the infinite horizon setting of Hayashi and Miao

(2011) can be made by assuming that the first two periods are always followed by

an infinite sequence of periods where the agent is dead and bequeaths nothing.

In the second period, the state of the agent can be described by two variables:

(i) a dummy variable d ∈ {alive, dead}, indicating whether the agent is alive

or dead, and (ii) a real number indicating how much she consumes (if alive) or

bequeaths (if dead). Thus, formally, the set of consequences for the second period

is X = {alive, dead} × R+. Because of our assumption that the agent is always

alive in period 1, the first-period set of consequences is simply {alive} × R+ and

the domain of choice is
(
{alive} × R+

)
×
(
∆ (X )

)Ω, where Ω is a finite subjective

state space.

This can be simplified since we assume that mortality is the only source of

uncertainty. The agent’s subjective prior can then be described by a probability

distribution over survival probabilities, i.e. a list of pairs (mi, pi) ∈ [0, 1]2 for i =

1, . . . , n such that ∑n
i=1 mi = 1. The interpretation is that there are n subjective

states and that the agent (subjectively) associates the probability mi with the
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state i ∈ {1, . . . , n} that corresponds to a survival probability equal to pi (and a

mortality probability equal to 1−pi). A setting with no ambiguity is one in which

mi = 1 for some i and mj = 0 for all j 6= i: The agent is certain to survive with

probability pi. Conversely, ambiguity occurs whenever there are two states i and

j with pi 6= pj and mi,mj 6= 0.

The instantaneous utility function f that appears in specification (2) is formally

defined on X = {alive, dead} × R+. In other words, f : (d, x) ∈ {alive, dead} ×

R+ 7→ f(d, x) ∈ R. To simplify the notation, rather than introducing the dummy

variable d to indicate whether the agent is alive or dead, we will simply use different

letters c and w to indicate whether it refers to a level of consumption or a bequest

level. A number c ∈ R+ must therefore be interpreted as an element (alive, c) ∈ X ,

while a number w ∈ R+ must be interpreted as an element (dead, w) ∈ X . We

will introduce the notation u(c) = f(alive, c) for the instantaneous utility of con-

sumption (if alive) and v(w) = f(dead, w) for the instantaneous utility of bequest

(if dead). As is standard, functions u and v are both assumed to be twice contin-

uously differentiable, strictly increasing, and concave. In representation (2), the

instantaneous utility f is defined up to a constant, and we can assume without loss

of generality that v(0) = 0. Note that once this normalization has been adopted,

adding or subtracting a constant to u cannot then be seen as mere normalization.

The utility gap u(c) − v(w) in fact measures how much the agent values being

alive and consuming c versus being dead and bequeathing wealth w. The larger

the utility gap, the more attractive being alive and consuming becomes compared

to being dead and bequeathing. The baseline situation corresponds to the one

where the agent exhibits no altruism towards her heirs, that is, to the case in

which v is constant (and thus equal to 0).

Using the above notation and representation (2), the utility of an agent who

consumes c1 in period 1 and consumes c2 or bequeaths w in period 2 (depending

on whether she survives or not) is given by:

U(c1, c2, w) = u(c1)− β

kA
log

 n∑
i=1

mi

(
pie
−kRu(c2) + (1− pi)e−kRv(w)

) kA
kR

 . (3)

From this equation we can formally show how the utility gap u(c2) − v(w)
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closely relates to the value of life concept, which quantifies how much an agent

is willing to pay for increasing her survival probabilities. Consider for example

the case where agents could increase their survival probability by an infinitesimal

amount ε in all states of the world. Their utility would then be obtained by

replacing pi by pi + ε, for all i, in equation (3). Assuming that asset returns are

independent of ε, one can compute the willingness to pay in period 1 for such a

mortality risk reduction:

∂U(c1, c2, w)
∂ε

/
∂U(c1, c2, w)

∂c1

∣∣∣∣∣
ε=0

= β
exp(−kRu(c2))− exp(−kRv(w))

−kRu′(c1)

×
∑n
i=1mi

(
pie
−kRu(c2) + (1− pi)e−kRv(w)

) kA
kR
−1

∑n
i=1mi

(
pie−kRu(c2) + (1− pi)e−kRv(w)

) kA
kR

, (4)

which has the same sign as u(c2) − v(w). Notice that in the limit case where kA
and kR tend to zero, which corresponds to the standard additive model, the above

formula provides ∂U(c1,c2,w)
∂ε

/∂U(c1,c2,w)
∂c1

∣∣∣
ε=0

= β u(c2)−v(w)
u′(c1) which corresponds to the

standard expression for the so-called value of a statistical life.4

As shown in Bommier et al. (2021), the sign of the value of life is crucial for

understanding the role of risk aversion on savings. There is a wide empirical liter-

ature on value-of-life estimates, both from academics (see for instance Viscusi and

Aldy 2003 for a survey of value-of-life estimates throughout the world) and from

institutions (see US Environmental Protection Agency Office of Air and Radiation

2011, for instance). Despite the heterogeneity in estimates, there is a strong con-

sensus that the value of life is positive and large. An up-to-date estimate for the

US is around 10 million in 2015 US dollars (Viscusi, 2018).

In the remainder of the paper, we will assume that mortality is exogenous.

The utility specification U(c1, c2, w) in equation (3) will therefore be the objective

function that the agent maximizes, subject to the budget constraints that will be

introduced later on. We will derive comparative statics results regarding savings

and annuity purchases related to the ambiguity and risk aversion parameters kA
and kR, while assuming that individuals’ beliefs (the mi and pi) are unchanged.

4In cases when the increase in survival probability ε would impact asset returns (for example
with annuities returns that adapt to an agent’s mortality choices), correcting terms would be
needed – even though these terms are typically quantitatively small.
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Interestingly, we will see that our results strongly depend on whether the value of

life is positive (which occurs when u(c2) > v(w)) – as suggested by the empirical

literature – or negative (i.e, when u(c2) < v(w)).

3.2 Particular cases

The general preference representation (3) embeds several particular cases that we

describe below.

No ambiguity. The no-ambiguity case corresponds to mi0 = 1 for some i0 and

mi = 0 for i 6= i0. The preference representation (3) becomes:

U(c1, c2, w) = u(c1)− β

kR
log

(
pi0e

−kRu(c2) + (1− pi0)e−kRv(w)
)
, (5)

which corresponds to the risk-sensitive preferences of Hansen and Sargent (1995).

In particular, the parameter kA no longer plays a role and risk aversion is driven

by the parameter kR, where more risk averse agents correspond to larger values of

the parameter kR.

The case kR = 0 can be obtained by taking the limit of expression (5) when

kR → 0, and corresponds to the standard additive model where U(c1, c2, w) =

u(c1) + β
(
pi0u(c2) + (1− pi0)v(w)

)
.

Ambiguity neutrality. Ambiguity neutrality corresponds to kA = kR. The

utility expression (3) becomes:

U(c1, c2, w) = u(c1)− β

kR
log

(
pe−kRu(c2) + (1− p)e−kRv(w)

)
, (6)

where p = ∑n
i=1mipi is the average mortality probability. Formally, this setup is

similar to the no-ambiguity case and expression (6) looks very much like expression

(5). Again, when kR = 0, we fall back on the additive model.

Temporal risk neutrality. The case kR = 0 implies temporal risk neutrality.

By continuity, for kR → 0 from expression (3), we deduce that the utility expression
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becomes:

U(c1, c2, w) = u(c1)− β

kA
log

 n∑
i=i

mi exp
(
−kA

(
piu(c2) + (1− pi)v(w)

)) .
This fits into the Klibanoff et al. (2009) recursive framework and exactly corre-

sponds to the specification used in Collard et al. (2018).

No objective probabilities. The last case corresponds to a setup where all

information is subjective. In other words, a situation where, for all i, we have

either pi = 0 or pi = 1. This situation reduces to a two (subjective)-state model,

where p1 = 1 occurs with subjective probability m1 and p2 = 0 with subjective

probability m2 = 1−m1. We then have:

U(c1, c2, w) = u(c1)− β

kA
log

(
m1e

−kAu(c2) + (1−m1)e−kAv(w)
)
,

similar to expressions (5) and (6), with kA instead of kR.

3.3 The agent’s program

We consider an ambiguity-and-risk-averse agent, whose preferences are assumed to

be represented by the utility function defined in equation (3). In the first period,

the agent is endowed with an initial wealth W > 0. She has no other source of

income during the two periods but can transfer consumption from the first period

to the second through savings in a bond and in an annuity. These savings are

denoted by s and a, respectively, and the first-period budget constraint is simply

W = c1 + s + a. The bond pays off the riskless gross interest rate r > 0 in the

second period, regardless of whether the agent is alive or not. Bond pay-offs, in

particular, can be bequeathed to the agent’s heirs. The annuity pays off the gross

rate ra > r, which is assumed to be higher than the riskless rate. Annuity pay-offs

are made only in cases of survival. This means that the second-period budget

constraints are c2 = raa + rs when the agent lives for two periods and consumes

the outcomes of her savings and w = rs when the agent dies and bequeaths her

bond savings.

We make two observations regarding the annuity return ra. First, in our am-
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biguity setting, the notion of an actuarially fair annuity is not a very relevant

concept. An objective survival probability can still be defined, as can an objec-

tive definition of actuarially fair annuities. However, from the agent’s perspective,

what actually matters is a subjective notion of fairness, which is not generally un-

equivocally defined due to the ambiguity setting. We therefore define the annuity

return simply by using the gross rate ra, higher than r, instead of defining it using

the riskless interest rate and some survival probability. The second observation

is that the annuity return rate ra is not affected by ambiguity and is assumed

to be perceived as constant by the agent. This implicitly means that the return

ra actually comes from pooling the heterogeneous mortality risk, such that the

agent cannot infer her objective survival probability from the gross rates ra and

r. Another (nonexclusive) possibility would be to assume that the annuity return

embeds a fee that cannot be observed by the agent.

Using the previous notation, the agent’s program can therefore be written as:

max
(s,a)∈R2

u(W−a− s)

− β

kA
log
 n∑
i=1

mi

(
pie
−kRu(raa+rs) + (1− pi)e−kRv(rs)

) kA
kR

, (7)

s.t. W − a− s ≥ 0, s ≥ 0, a ≥ 0, (8)

where we exclude negative consumption levels, borrowings, and annuity short-

sellings.

3.4 The role of risk and ambiguity aversion

The impact of kA and kR on saving choices is summarized in the following propo-

sition, whose proof is given in the Appendix.

Proposition 1 Consider the consumption-saving program of equations (7) and

(8) with kA ≥ kR > 0. We denote by a(kA, kR) ≥ 0 and s(kA, kR) ≥ 0 the optimal

savings in annuities and bonds, respectively.

We assume that the optimum is characterized by a positive value of life, i.e.,

formally, u(raa(kA, kR) + rs(kA, kR)) > v(rs(kA, kR)).

We distinguish three cases (besides the trivial case a(kA, kR) = s(kA, kR) = 0).
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1. Case a(kA, kR) > 0 and s(kA, kR) > 0.

(a) Ambiguity aversion. We have: ∂a(kA,kR)
∂kA

∣∣∣
kR

< 0, ∂s(kA,kR)
∂kA

∣∣∣
kR

> 0, as

well as ∂(raa(kA,kR)+rb(kA,kR))
∂kA

∣∣∣
kR

< 0.

(b) Net risk aversion. We have: ∂a(kA,kR)
∂kR

∣∣∣
kA/kR

< 0, ∂s(kA,kR)
∂kR

∣∣∣
kA/kR

> 0,
∂(raa(kA,kR)+rb(kA,kR))

∂kR

∣∣∣
kA/kR

< 0.

2. Case a(kA, kR) > 0 and s(kA, kR) = 0: ∂a(kA,kR)
∂kA

∣∣∣
kR

< 0 and ∂a(kA,kR)
∂kR

∣∣∣
kA/kR

<

0.

3. Case a(kA, kR) = 0 and s(kA, kR) > 0: ∂s(kA,kR)
∂kA

∣∣∣
kR

and ∂s(kA,kR)
∂kR

∣∣∣
kA/kR

have

the same sign as
(
v′
(
rs(kA, kR)

)
− u′

(
rs(kA, kR)

))
.

The proposition characterizes the role of ambiguity and net risk aversion for

an ambiguity-and-risk-averse agent (kA ≥ kR > 0). The only condition required

to derive the results of Proposition 1 is that, at the optimum, the utility of being

alive in the second period and consuming is greater than the utility of being dead

and bequeathing one’s wealth. Formally: u(raa + rs) > v(rs). In other words,

the condition simply means that life is worth living, or that the value of life is

positive (see also equation (4)). As already mentioned, despite some measurement

heterogeneity, there is plenty of empirical evidence that the value of life is large

and positive. This assumption is therefore reasonable and not very restrictive.

Proposition 1 distinguishes three cases depending on whether saving is con-

strained to one instrument. The interior case, corresponding to unconstrained

annuity and bond holdings, is reported in case 1. Varying the ambiguity aver-

sion parameter kA – while keeping the risk aversion parameter kR fixed – has

an unambiguous impact on security holdings. A larger ambiguity aversion di-

minishes the demand for annuities but increases the demand for bonds. The

overall impact is such that second-period consumption (equal to the quantity

raa(kA, kR) + rb(kA, kR)) also diminishes when ambiguity aversion rises.

The role of the “net” risk aversion parameter is obtained by increasing kR

and kA while maintaining a constant ratio kA/kR. We find that the impact of

an increase in net risk aversion is qualitatively similar to that of an increase in

ambiguity aversion.
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Case 2, which corresponds to constrained bond savings, is very similar to case

1. Since only one saving instrument is available and no portfolio choice is possible,

the result is much simpler to state. A higher ambiguity aversion – or a higher net

risk aversion – implies smaller annuity holdings.

Case 3 corresponds to constrained annuity holdings. The result, be it for the

role of ambiguity aversion or the role of net risk aversion, depends on the sign

of the difference between the marginal utility of consumption when alive and the

marginal utility of bequest. The intuition is as follows. An increase in ambiguity

aversion – or in net risk aversion – translates into the willingness to increase lifetime

utility in the bad state (i.e., death). With monotone preferences, this necessarily

reduces the lifetime utility in the good state (i.e., survival) and diminishes the

dispersion in lifetime utilities. In the absence of an annuity holding, the dispersion

in lifetime utilities amounts to β(u(rs)−v(rs)), which is positive because the value

of life is positive. The way in which the riskless saving s should be varied to reduce

the dispersion in lifetime utilities therefore depends on whether u(rs) − v(rs) is

increasing or decreasing with s, and thus on the sign of the derivative u′(rs)−v′(rs).

When the marginal utility in the good state is higher than the marginal utility in

the bad state (u′(rs)− v′(rs) > 0), reducing the dispersion in lifetime utilities will

involve smaller savings. Conversely, if u′(rs)−v′(rs) < 0, an increase in ambiguity

aversion or in net risk aversion will increase savings.

In the absence of a bequest motive (v′ = 0), the sign of the derivatives in

case 3 is clear, and an increase in either net risk aversion or ambiguity aversion

diminishes both savings and second-period consumption. With non-trivial bequest

motives, a very common specification (up to a normalization constant) is v(w) =

θ(u(w+w)−u(w)), where θ ≥ 0 reflects the intensity of the altruistic motive, and

w > 0 makes a bequest a luxury good. Furthermore, the intertemporal elasticity

of substitution is also often assumed to be constant, with u′(c) = c−σ.5 In such a

case, the sign of u′(rs) − v′(rs) is not clear-cut: it is typically positive for small

values of s and becomes negative for larger values. The impact of ambiguity and

net risk aversion will then depend on this sign, as shown in Proposition 1.
5Such calibrations can be found, for instance, in De Nardi (2004), De Nardi et al. (2010),

Ameriks et al. (2011), Lockwood (2012), or Pashchenko (2013), among many others.
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4 Discussion

We have proved that the comparative statics of ambiguity and net risk aversion

yield non-ambiguous results in an ambiguity setting à la Anscombe-Auman. A

larger ambiguity aversion or a larger net risk aversion means a smaller demand for

annuities and a larger demand for riskless bonds. To obtain the intuition, note

that annuities are uncertain assets that pay off in the good state of the world (i.e.,

when the agent lives a long life) and pay nothing in the bad state (i.e., in case of an

early death). By analogy with finance, we can therefore consider that an annuity

has the fundamental properties of a pro-cyclical asset. It is then quite natural that

uncertainty aversion, be it ambiguity or risk aversion, reduces investment in such

an asset. We would of course have found a converse result if we had considered

hedging assets (such as life-insurance products that pay only in the case of death).

While our results may look intuitive, we emphasize that they go against the

common claim that, annuities being insurance products, the demand for annuities

should increase with uncertainty aversion. Since mortality risk makes preferences

state-dependent, the link between insurance demand and risk aversion is not that

obvious. As our results indicate, there are cases where the demand for insurance

may decrease (and not increase) with risk aversion.

Preference monotonicity is the key ingredient, as it enables us to highlight the

fundamental assumptions required for our analysis, and in particular the assump-

tions related to the value of life. Because of the monotonicity assumption, we

may view the agent’s decision as being a trade-off between welfares in different

states (without monotonicity the agent may want to reduce welfare in all states).

Uncertainty aversion then has a fairly clear role, dictating how much weight to

put on bad states compared to good ones. To derive the impact of an increase in

uncertainty aversion, it is therefore necessary to properly identify good and bad

states – or in our framework to identify whether survival should be viewed as a

good or a bad realization. In the tradition of revealed preferences, this involves

looking at the literature on endogenous mortality, which clearly indicates that the

value of life is positive.

A final take-home message is that to make predictions regarding the impact of

uncertainty aversion in the presence of an exogenous, non-monetary background
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risk (mortality risk in our paper, although this could also be health risk, for in-

stance), it is necessary to use information that can be gleaned only from decisions

where the degree of background risk is endogenous.

A Proof of Proposition 1: Interior case a, s > 0

The program can be written as:

max
(s,a)∈R2

+

u(W − a− s)− β

kA
log

 n∑
i=1

mi

(
pie
−kRu(raa+rs) + (1− pi)e−kRv(rs)

) kA
kR

 .
Assuming an interior equilibrium, the first-order conditions are:

u′(W−a−s)=βrau
′(raa+rs)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

, (9)

u′(W−a−s)=βru′(raa+rs)

∑n
i=1 mipi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

(10)

+βrv′(rs)ekR(u(raa+rs)−v(rs))
∑n
i=1mi(1− pi)

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa+rs)−v(rs))

) kA
kR

.

We introduce the following notation:

ηi = pi + (1− pi)ekR(u(raa+rs)−v(rs)), (11)

as well as the expectation Em[·] and the covariance Covm (when well-defined):

Em [X] =
∑n
i=1miη

kA
kR
i Xi∑n

i=1miη
kA
kR
i

, (12)

Covm(X, Y ) = Em[XY ]− Em[X]Em[Y ], (13)
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Using this notation, the first-order condition (9) and (10) become:

u′(W − a− s) = βrau
′(raa+ rs)Em

[
p

η

]
, (14)(

1− r

ra

)
u′(W − a− s) = βrv′(rs)ekR(u(raa+rs)−v(rs))Em

[
1− p
η

]
. (15)

A.1 Impact of kA

A.1.1 First-order condition (14)

Computing the derivative of (14) with respect to kA yields, using the notation ηi
defined in (11):

− u′′(W − a− s)
(
∂a

∂kA
+ ∂s

∂kA

)
=βra

(
ra
∂a

∂kA
+ r

∂s

∂kA

)
u′′(raa+ rs)

∑n
i=1mipiη

kA
kR
−1

i∑n
i=1miη

kA
kR
i

+ βrau
′(raa+ rs)

u′(raa+ rs)
(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)r ∂s

∂kA

ekR(u(raa+rs)−v(rs))

×

(kA − kR)
∑n
i=1mipi(1− pi)η

kA
kR
−2

i∑n
i=1miη

kA
kR
i

−kA
∑n
i=1mi(1− pi)η

kA
kR
−1

i

∑n
i=1mipiη

kA
kR
−1

i

(∑n
i=1miη

kA
kR
i )2



+βra
kR
u′(raa+ rs)


∑n
i=1mipi log (ηi) η

kA
kR
−1

i∑n
i=1miη

kA
kR
i

−
∑n
i=1mipiη

kA
kR
−1

i∑n
i=1miη

kA
kR
i

∑n
i=1mi log (ηi) η

kA
kR
i∑n

i=1miη
kA
kR
i

.

Introducing the operator Em of equation (12), we obtain after dividing both sides

of equality by βrau′(raa+ rs) and using (14):

−Em
[
p

η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kA
+ ∂s

∂kA

)
=
(
ra
∂a

∂kA
+r ∂s

∂kA

)
u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
(16)

+
u′(raa+ rs)

(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)

(
r
∂s

∂kA

) ekR(u(raa+rs)−v(rs))

×

(kA − kR)Em
[
p(1− p)
η2

]
−kAEm

[
1− p
η

]
Em

[
p

η

]+
Covm

(
p
η
, log(η)

)
kR

.
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A.1.2 First-order condition (15)

We now compute the derivative of equation (15) with respect to kA. The compu-

tation is similar to the one for (14) and we get:

− u′′(W − a− s)
u′(W − a− s)Em

[
1− p
η

](
∂a

∂kA
+ ∂s

∂kA

)
= r

∂s

∂kA

v′′(rs)
v′(rs)Em

[
1− p
η

]
(17)

−

u′(raa+ rs)
(
ra
∂a

∂kA
+ r

∂s

∂kA

)
− v′(rs)

(
r
∂s

∂kA

)
×

(kA − kR)Em
[
p(1− p)
η2

]
−kAEm

[
1− p
η

]
Em

[
p

η

]+
Covm

(
1−p
η
, log(η)

)
kR

.

A.1.3 Conclusion

With matrix notation, equations (16) and (17) can be rewritten as:

M

 ra
∂a
∂kA

r ∂s
∂kA

 = 1
kR

 Covm
(
p
η
, log(η)

)
Covm

(
1−p
η
, log(η)

)
 , (18)

with M = (Mij)1≤i,j≤2 and:

M11 = − 1
ra
Em

[
p

η

]
u′′(W − a− s)
u′(W − a− s) −Em

[
p

η

]
u′′(raa+ rs)
u′(raa+ rs) +ekR(u(raa+rs)−v(rs))

× u′(raa+ rs)
kAEm

[
1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

],
M12 = −1

r
Em

[
p

η

]
u′′(W − a− s)
u′(W − a− s) − Em

[
p

η

]
u′′(raa+ rs)
u′(raa+ rs) +ekR(u(raa+rs)−v(rs))

×
(
u′(raa+ rs)− v′(rs)

)kAEm
[

1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

],
M21 = − 1

ra
Em

[
1− p
η

]
u′′(W − a− s)
u′(W − a− s)

− u′(raa+ rs)
kAEm

[
1− p
η

]
Em

[
p

η

]
− (kA − kR)Em

[
p(1− p)
η2

] ,
M22 = −1

r
Em

[
1− p
η

]
u′′(W − a− s)
u′(W − a− s) − Em

[
1− p
η

]
v′′(rs)
v′(rs)

−
(
u′(raa+ rs)− v′(rs)

)kAEm
[

1− p
η

]
Em

[
p

η

]
−(kA − kR)Em

[
p(1− p)
η2

].
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We also define:

κ = kAEm

[
1− p
η

]
Em

[
p

η

]
− (kA − kR)Em

[
p(1− p)
η2

]

= kREm

[
p(1− p)
η2

]
− kACovm

(
1− p
η

,
p

η

)
. (19)

We compute the determinant of the matrix M :

detM = Em

[
1− p
η

]
Em

[
p

η

](
1
r
− 1
ra

)
u′′(raa+ rs)
u′(raa+ rs)

u′′(W − a− s)
u′(W − a− s)

+ Em

[
1− p
η

]
Em

[
p

η

](
− u′′(W − a− s)
rau′(W − a− s)

−u
′′(raa+ rs)
u′(raa+ rs)

)(
−v
′′(rs)
v′(rs)

)

+ κv′(rs)Em
[
p

η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)

+ κu′(raa+ rs)Em
[
p

η

](
1
r
− 1
ra

)(
−u

′′(W − a− s)
u′(W − a− s)

)

+ κekR(u(raa+rs)−v(rs))Em
[

1− p
η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) v

′(rs)

+u′(raa+ rs)
( 1

ra
− 1
r

)
u′′(W − a− s)
u′(W − a− s) −

v′′(rs)
v′(rs)


 .

Since ra ≥ r, we deduce that detM > 0 and that the matrix M is invertible.

We deduce from (18) the expression of partial derivatives ∂s
∂kA

and ∂a
∂kA

.

 ra
∂a
∂kA

r ∂s
∂kA

 = 1
kR detM

 M22Covm
(
p
η
, log(η)

)
−M12Covm

(
1−p
η
, log(η)

)
−M21Covm

(
p
η
, log(η)

)
+M11Covm

(
1−p
η
, log(η)

)
 .
(20)

Partial derivative ∂s
∂kA

. Equality (20) yields:

kR detMr
∂s

∂kA
= κu′(raa+ rs) (21)

×

Covm
(
p

η
, log(η)

)
+ekR(u(raa+rs)−v(rs))Covm

(
1− p
η

, log(η)
)

− u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

− 1
ra

u′′(W − a− s)
u′(W − a− s)

−Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
+Em

[
p

η

]
Covm

(
1− p
η

, log(η)
).
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From the definition (11), we deduce:

p

η
= ekR(u(raa+rs)−v(rs))

ekR(u(raa+rs)−v(rs)) − 1
1
η
− 1
ekR(u(raa+rs)−v(rs)) − 1

, (22)

1− p
η

= 1
ekR(u(raa+rs)−v(rs)) − 1

− 1
ekR(u(raa+rs)−v(rs)) − 1

1
η
. (23)

These two values imply the following equality:

Covm

(
p

η
, log(η)

)
+ ekR(u(raa+rs)−v(rs))Covm

(
1− p
η

, log(η)
)

(24)

= ekR(u(raa+rs)−v(rs))

ekR(u(raa+rs)−v(rs)) − 1

Covm
(

1
η
, log(η)

)
− Covm

(
1
η
, log(η)

) = 0

and the determinant expression (11) simplifies into:

kR detMr
∂s

∂kA
= −u

′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

(25)

− 1
ra

u′′(W − a− s)
u′(W − a− s)

−Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
+Em

[
p

η

]
Covm

(
1− p
η

, log(η)
).

Definitions (22) and (23) imply that Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
>

0. Since detM,kR > 0, we obtain from (25) that: ∂s
∂kA

> 0.

Partial derivative ∂a
∂kA

. Equality (20) also yields, using equation (24) which

states that Covm
(
p
η
, log(η)

)
+ ekR(u(raa+rs)−v(rs)) Covm

(
1−p
η
, log(η)

)
= 0,

kR detMra
∂a

∂kA
= u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
Covm

(
1− p
η

, log(η)
)

(26)

− v′′(rs)
v′(rs)Em

[
1− p
η

]
Covm

(
p

η
, log(η)

)

− 1
r

u′′(W − a− s)
u′(W − a− s)

Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
−Em

[
p

η

]
Covm

(
1− p
η

, log(η)
) .

As for (25), Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
> 0, which implies that

∂a
∂kA

< 0 with kR detMra > 0.
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Sum of partial derivatives r ∂s
∂kA

+ ra
∂s
∂kA

. We deduce from (21) and (26):

kR detM
(
r
∂s

∂kA
+ ra

∂a

∂kA

)
= −v

′′(rs)
v′(rs)Em

[
1− p
η

]
Covm

(
p

η
, log(η)

)

−
(

1
r
− 1
ra

)
u′′(W − a− s)
u′(W − a− s)

Em
[

1− p
η

]
Covm

(
p

η
, log(η)

)
−Em

[
p

η

]
Covm

(
1− p
η

, log(η)
),

which is negative since Covm
(
p
η
, log(η)

)
< 0 and Covm

(
1−p
η
, log(η)

)
> 0. We

deduce: r ∂s
∂kA

+ ra
∂a
∂kA

< 0.

A.2 Impact of kR

We will compute the derivatives of (14) and (15) with respect to kR, while keeping

the ratio kA/kR unchanged. For the sake of clarity, we will denote such a derivative

of a function f as ∂f
∂kR

instead of ∂f
∂kR

∣∣∣
kA/kR

. Computing the derivative of (14) yields:

−Em
[
p

η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kR
+ ∂s

∂kR

)
=
(
ra
∂a

∂kR
+r ∂s

∂kR

)
u′′(raa+ rs)
u′(raa+ rs)Em

[
p

η

]
(27)

− κ

u′(raa+ rs)
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
−v′(rs)r ∂s

∂kR

 ekR(u(raa+rs)−v(rs))

− κ

kR

(
u(raa+ rs)− v(rs)

)
ekR(u(raa+rs)−v(rs)).

Similarly, computing the derivative of (15) yields:

−Em
[

1− p
η

]
u′′(W − a− s)
u′(W − a− s)

(
∂a

∂kR
+ ∂s

∂kR

)
=βr2 ∂s

∂kR

v′′(rs)
v′(rs)Em

[
1− p
η

]
(28)

+ κ

u′(raa+ rs)
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
− v′(rs)

(
r
∂s

∂kR

)
+ κ

kR

(
u(raa+ rs)− v(rs)

)
.

In matrix notation, we deduce from (27) and (28):

ra ∂a
∂kR

r ∂s
∂kR

 = u(raa+ rs)− v(rs)
kR detM︸ ︷︷ ︸

=Λ−1>0

κ

 M22 −M12

−M21 M11


−ekR(u(raa+rs)−v(rs))

1

 . (29)

The matrixM is defined in (18) and detM > 0, κ > 0 and u(raa+rs)−v(rs) > 0.

23



A.2.1 Partial derivative ∂s
∂kR

.

Using the expressions of M11 and M21, we obtain from (29):

Λr ∂s
∂kR

= 1
ra
Em

[
1− p
η

](
−u

′′(W − a− s)
u′(W − a− s)

)
ekR(u(raa+rs)−v(rs)) (30)

+ Em

[
p

η

](
− 1
ra

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)
,

which unambiguously yields: ∂s
∂kR

> 0.

A.2.2 Partial derivative ∂a
∂kR

.

The expressions of M12 and M22 imply, using (29)

Λra
∂a

∂kR
= −Em

[
1− p
η

](
−1
r

u′′(W − a− s)
u′(W − a− s) −

v′′(rs)
v′(rs)

)
ekR(u(raa+rs)−v(rs)) (31)

− Em
[
p

η

](
−1
r

u′′(W − a− s)
u′(W − a− s) −

u′′(raa+ rs)
u′(raa+ rs)

)
.

which is negative and implies that: ∂a
∂kR

< 0.

A.2.3 Sum of partial derivatives ra ∂a
∂kR

+ r ∂s
∂kR

.

Summing equations (30) and (31) leads to:

Λ
(
ra
∂a

∂kR
+ r

∂s

∂kR

)
= −Em

[
1− p
η

](
−v
′′(rs)
v′(rs)

)
ekR(u(raa+rs)−v(rs))

−
(

1
r
− 1
ra

)
Em

[
1− p
η

](
−u

′′(W − a− s)
u′(W − a− s)

)
ekR(u(raa+rs)−v(rs))

−
(

1
r
− 1
ra

)
Em

[
p

η

](
−u

′′(W − a− s)
u′(W − a− s)

)
,

which implies since ra ≥ r that: ra ∂a
∂kR

+ r ∂s
∂kR

< 0.
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B Proof of Proposition 1: Corner case: a = 0

The annuity choice is zero and the riskless saving choice is determined by the

following first-order condition (which is (10) with a = 0):

u′(W − s) = βru′(rs)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR

(32)

+βrv′(rs)ekR(u(rs)−v(rs))
∑n
i=1mi(1− pi)

(
pi+(1− pi)ekR(u(rs)−v(rs))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(rs)−v(rs))

) kA
kR

.

B.1 Role of kA

Computing the derivative of (32) with respect to kA (with kR constant) yields after

some manipulation:

−u′′(W − s) ∂s
∂kA

= βr2 ∂s

∂kA

u′′(rs)Em
[
p

η

]
+ v′′(rs)ekR(u(rs)−v(rs))Em

[
1− p
η

]
− κβr

(
u′(rs)− v′(rs)

)2
ekR(u(rs)−v(rs))

(
r
∂s

∂kA

)

+ βr

kR

(
u′(rs)− v′(rs)

)
Covm

(
p

η
, log(η)

)
.

Since Covm
(
p
η
, log(η)

)
< 0, this proves that ∂s

∂kA
has the same sign as u′(rs)−v′(rs).

B.2 Role of kR

Computing the derivative of (32) with respect to kR (with kA/kR constant) yields:

−u′′(W − s) ∂s
∂kR

= βr2 ∂s

∂kR

u′′(rs)Em
[
p

η

]
+ ekR(u(rs)−v(rs))v′′(rs)Em

[
1− p
η

]
− κβr

(
u′(rs)− v′(rs)

)2
(
r
∂s

∂kR

)
ekR(u(rs)−v(rs))

− κβr
kR

(
u′(rs)− v′(rs)

) (
u(rs)− v(rs)

)
ekR(u(rs)−v(rs)),

which implies that ∂s
∂kR

has the same sign as u′(rs)− v′(rs).

25



C Proof: Corner case s = 0

The annuity choice is determined by the following first-order condition – which is

(9) with a = 0:

u′(W − a) = βrau
′(raa)

∑n
i=1mipi

(
pi + (1− pi)ekR(u(raa)−v(0))

) kA
kR
−1

∑n
i=1mi

(
pi + (1− pi)ekR(u(raa)−v(0))

) kA
kR

. (33)

C.1 Role of kA

Computing the derivative of (33) with respect to kA (with kR constant) yields:

−u′′(W − a)
(
∂a

∂kA

)
= βra

(
ra
∂a

∂kA

)
u′′(raa)Em

[
p

η

]
(34)

− κβrau′(raa)2
(
ra
∂a

∂kA

)
ekR(u(raa)−v(0)) + βra

kR
u′(raa)Covm

(
p

η
, log(η)

)
,

which implies since κ > 0 and Covm
(
p
η
, log(η)

)
< 0 that ∂a

∂kA
< 0.

C.2 Role of kR

Computing the derivative of (33) with respect to kR (with kR/kA constant) yields:

−u′′(W − a− s)
(
∂a

∂kR

)
= βra

(
ra
∂a

∂kR

)
u′′(raa)Em

[
p

η

]
(35)

− κβrau′(raa)2
(
ra
∂a

∂kR

)
ekR(u(raa)−v(0))

− κβra
kR

u′(raa)2ekR(u(raa)−v(0)),

which implies since κ > 0: ∂a
∂kR

< 0.
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