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Abstract

Two articles (Hugonnier et al., 2013; Córdoba and Ripoll, 2017) have

proposed a recursive formulation of utility functions combining a positive

value of life, preference homotheticity, and a constant elasticity of substitution.

However, when the elasticity of substitution is below one and mortality rates

take plausible values, this recursive formulation admits only a unique solution

where utility is constant and equals zero everywhere. Non-constant solutions

may only exist if mortality rates are assumed to remain low at all ages, namely

in a world of perpetually young agents. Such solutions are therefore unsuitable

for studying the value of life in demographically relevant settings and yield

counterfactual predictions for saving behavior. We conclude this clarifying

paper by reviewing various recursive specifications that can be used to study

the value of life with no such problems.
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1 Introduction

Following the seminal works of Epstein and Zin (1989) and Weil (1989), recursive

utility models have become a workhorse of economic modeling, with applications

in numerous fields. While recursive preferences were initially developed to address

long-standing puzzles in the macro-finance literature, they are now increasingly

employed in other fields such as the economics of climate change, health economics,

or household finance. Two studies published in the Review of Economic Studies,

Hugonnier et al. (2013, henceforth HPSA) and Córdoba and Ripoll (2017, henceforth

CR) argue in favor of using homothetic recursive preferences to discuss questions

relating to the value of life.1 These papers are becoming increasingly popular, with

citations in many prestigious journals, including Econometrica, and the Review of

Economic Studies. They were suggested to reassess fundamental questions such as

the welfare impact of the longevity crisis stemming from AIDS and wars. They

are now being used to contribute to the growing literature that intends to price

the mortality risk caused by the Covid-19 pandemic. For example, Córdoba et al.

(2020) suggest to use for that purpose the recursive model of CR, rather the standard

additive one – and thus to follow a route that diverges from that of Hall et al. (2020),

Hammitt (2020), Greenstone and Nigam (2020), or Robinson et al. (2020) among

others. The central argument of CR and HPSA is that the so-called Epstein-Zin-Weil

(EZW, henceforth) preferences provide recursive utility representations featuring

homotheticity, a constant elasticity of substitution (which may be smaller or larger

than one), and a positive value of life independent of the level of consumption. The

latter feature means that life is preferable to death, no matter the consumption level.

With the standard additive model, combining these three properties is only possible

when the intertemporal elasticity of substitution (IES, henceforth) is larger than one.

HPSA and CR claim that a significant advantage of the EZW formulation is that

it can also cover the case where the IES is below one, which is usually seen as the
1The two articles differ in their modeling approach. HPSA consider a continuous-time model,

whereas CR employ a discrete-time model.
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empirically relevant case (see, for example, Havránek, 2015).

The current paper makes three contributions. First, we point out the problematic

features that emerge when the IES is assumed to be below one in the CR and

HPSA specifications. Our remarks relate to both the mathematical properties of

these models and the economic predictions they provide. These predictions are

at odds with those of the standard additive model and with economic intuition.

Second, we show that correcting the mathematical analysis in CR helps to better

understand the origins of these problematic features. Last, we explain that there

are recursive specifications, different from those of CR and HPSA, that provide a

consistent extension of the additive model in the presence of mortality risk and can

be most useful for economic analysis.

In our first contribution, we explain that if the IES is below one, the recursive

models of HPSA and CR, when applied to actual mortality patterns, admit a unique

solution where utility is constant and equals zero everywhere. Non-constant solutions

only exist when mortality is constrained to remain small at all ages. Such a restriction

involves assuming that agents are perpetually young, with a life expectancy that

remains large at all ages. This makes such models unsuitable for studying value-of-life

issues with realistic demographic data. In addition, these non-constant solutions

imply that consumption at a given age and survival at that same age are substitutes

(and not complements), leading to counterfactual predictions regarding life-cycle

consumption profiles.

The constant zero utility in HPSA and CR arises when death is assumed to

provide a utility equal to zero (just like being alive and consuming nothing, with

their normalization). Looking at well-defined specifications where death is assumed

to provide a positive utility level helps shed light on the contributions of HPSA and

CR. In particular, useful insights may be gained by examining the limit-model that is

obtained when the utility of death is assumed to be positive but infinitesimally close

to zero. Such limit is actually mentioned in CR and is also discussed in Córdoba

et al. (2020). Our second contribution involves demonstrating that, contrary to
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what is stated in those papers, when the IES is below one, this limit-model suggests

consumption profiles that substantially differ from those predicted by the homothetic

specifications of CR and HPSA. The implications regarding the impact of mortality

risk on saving behaviors are in fact contrary to those found in CR. Moreover, we find

that when the utility of death tends to zero, the value of life becomes infinite in the

limit-model, meaning that this model is unable to deal with endogenous mortality

choices.

This paper does not claim that all recursive preferences are inadequate for

studying value-of-life questions. On the contrary, and this is the third contribution

of our paper, we point to the risk-sensitive preferences of Hansen and Sargent

(1995) that enable to consistently extend the additive model. With such a recursive

framework, the value of life is mostly driven by a parameter that determines the

utility gap between life and death. The IES and the risk aversion parameter (which

can be varied independently from one another) can take any positive value without

generating a discontinuity. This contrasts with homothetic EZW preferences which

imply a negative value of life when the coefficient of risk aversion is set above 1

or a constant zero utility when the IES and the risk aversion coefficient are below

1. Moreover, risk-sensitive preferences are monotone with respect to first-order

stochastic dominance, avoiding the choice of dominated strategies that may occur

when working with EZW preferences (see Bommier et al., 2017 or Bommier et al.,

2020 for illustrations). Risk-sensitive preferences therefore provide an appealing

theoretical framework for extending the literature on the relationship between the

value of life and risk aversion, offering a way to complement the analyses of Eeckhoudt

and Hammitt (2004), Kaplow (2005), Andersson and Treich (2011) and Bommier

and Villeneuve (2012). We also explain that the risk-sensitive model can be easily

extended to account for ambiguity aversion. Although we leave it for future work,

this recursive model could provide a pathway for extending to a multi-period setting

the contributions of Treich (2010) and Bleichrodt et al. (2019) regarding the impact

of ambiguity and ambiguity aversion.
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The structure of our paper is as follows. In Section 2, we explain the shortcomings

of the EZW homothetic specifications that account for the possibility of death and

assume an IES below one. Section 3 clarifies the origin of such shortcomings. Section

4 then takes a constructive approach and points to a well-behaved recursive framework

that can be used to discuss value-of-life issues.

For the sake of simplicity, the analysis in the main body of our paper is developed

in a discrete-time framework, as is the case in CR. To relate our work to that of

HPSA, we need to consider a continuous-time setting. This is is done in Appendix

C, where we show that the arguments developed in the main body of the paper also

apply to continuous-time modeling.

2 Utility functions in Córdoba and Ripoll (2017)

when the IES is smaller than one

2.1 Recursive models

To understand the problems relating to the recursive formulation employed in CR,

we briefly review the foundations of recursive approaches. In discrete time, recursive

models state that at time t, agents maximize a utility function Ut, which is the

solution of a backward recursive equation:

∀t ≥ 0, Ut = W (xt, µ(Ut+1)), (1)

where xt is a vector collecting an agent’s choices at time t (such as consumption

or labor effort), Ut+1 is the continuation utility at date t + 1, which is a random

variable from the date t point of view, µ(·) is a certainty equivalent, mapping random

variables into a scalar, and W (·, ·) is an aggregator that combines the certainty

equivalent of the continuation utility with date-t choices.

Not all recursions admit a solution, of course, and it is therefore important

to check that the recursive equations (1) characterize a well-defined sequence of
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utilities (Ut)t≥0. The easiest way to guarantee the existence of the sequence (Ut)t≥0

is to assume an exogenous finite horizon T <∞ and an exogenous terminal value

UT . Applying equation (1) at t = T − 1 provides utility UT−1 and by backward

induction all utilities Ut from t = T − 1 to t = 0. In infinite horizon settings, the

problem is technically more involved. Existence of a solution can be, for instance,

addressed either by using fixed-point theorems or by showing that the infinite-horizon

specification can be obtained as the limit of a sequence of finite-horizon specifications

(see, e.g., the discussion in Boyd, 1990).

In many cases, the existence of well-behaved solutions is well-known and it is

possible to work directly with equation (1) to compute first-order conditions and

optimal strategies. But checking that there exists a well-defined solution to the

recursive equation is nevertheless central, otherwise conclusions could be inaccurate.

Consider, for example, in an infinite horizon setting with no uncertainty, the recursion:

Ut = (z1−σ
t + U1−σ

t+1 )
1

1−σ , (2)

where zt denotes time-t consumption, assumed to take values in a compact interval

[zmin, zmax] ⊂ R++, and σ a scalar assumed to be greater than 1. We can easily check

that the only solution of this recursion is Ut = 0, for all t ≥ 0, independently of

consumption levels.2,3 Utility being constant, all consumption strategies are equally

good. If we set such considerations aside, it might seem natural to derive from (2)

that:
∂Ut
∂zt

= z−σt Uσ
t and ∂Ut

∂zt+1
= z−σt+1U

σ
t , (3)

and to conclude that the marginal rate of substitution ∂Ut
∂zt
/ ∂Ut
∂zt+1

is given by (zt+1/zt)σ.

This would typically lead to stringent restrictions on optimal consumption plans being

derived, while in fact all strategies are optimal. The problem, which only becomes
2Throughout the paper, we follow the convention that for any real number κ < 0, we have

0κ =∞ and (∞)κ = 0.
3This result is indirectly related to the findings of Koopmans (1960), which show that time

preferences are necessary for building a sound recursive model of intertemporal choice in infinite-
horizon settings.
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apparent when solving for Ut, is that the marginal utilities in (3) are actually both

equal to zero, their ratio thus being undefined. We mention this example because it

shares a number of similarities with the recursive approaches we discuss below.

2.2 Córdoba and Ripoll (2017)’s formulation

In order to ease the discussion, we will focus on the case where the only uncertainty

at play relates to mortality. The most widely used model in the value of life literature

relies on the standard additive expected utility model initially introduced by Yaari

(1965). In a discrete-time setting, the utility is recursively defined by:

V add
t = u(zt) + βπtV

add
t+1 , (4)

where zt > 0 is the consumption level, πt is the probability of surviving from period

t to period t+ 1 and β < 1 is a discount factor. The period utility function is most

often assumed to be u(zt) = z1−σ
t

1−σ + ul, so that the IES, u′(zt)
−ztu′′(zt) , is constant and

equal to 1
σ
. The constant ul fixes the utility gap between life and death (whose

utility is normalized to zero). While the constant ul can be ignored when considering

choices under an exogenous mortality patterns it plays a key role when discussing

the welfare impacts of mortality risk. It can be checked that, if consumption takes

value in a compact interval [zmin, zmax] ⊂ R++, such a recursion has for solution:

V add
t =

∞∑
τ=t

βτ−t
(
Πτ−1
j=t πj

)
( z

1−σ
τ

1− σ + ul).

The utility V add
t is thus a sum of instantaneous utilities weighted by the probability

of being alive in the corresponding period and a discount factor.

CR suggest to depart from this specification and to use EZW preferences. In a

first step, CR formalize the problem without constraining the utility of death to a

specific value. Denoting the utility of a dead agent by V , their recursive model is

written as:

Vt =
[
z1−σ
t + β

(
πtV

1−γ
t+1 + (1− πt)V 1−γ

) 1−σ
1−γ
] 1

1−σ
, (5)
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where γ is a parameter driving risk aversion and other notation is the same as in the

additive specification (4).

The problem arises when CR require the utility of dead agents to be equal to

zero, V = 0. Setting V = 0 is central to their analysis, since they claim that this

assumption guarantees that:

1. the value of life is positive for all consumption levels, avoiding the convexity

issues raised by Rosen (1981) and the taste for a “Russian-roulette type of

lottery” (CR, pp. 1473 and 1480–81);

2. the representation is homothetic (CR, Section 2.3); and

3. the model is well-ordered in terms of risk aversion, which would not be the

case otherwise (CR, Section 5.2).

CR emphasize that “What makes EZW utility more flexible than EU is the possibility

of setting z = 0 [i.e., V = 0] when σ > 1, so that non-convexities are eliminated and

life is valued by all.” (CR, p. 1482). Most of their subsequent analysis is restricted to

the case where V = 0. The same is true for Córdoba et al. (2020).

Let us therefore investigate the implications of setting V = 0. CR explain that

this requires γ < 1, so that V 1−γ = 0. With V = 0 and γ < 1, equation (5) reduces

to:

Vt =
[
z1−σ
t + βπ

1−σ
1−γ
t V 1−σ

t+1

] 1
1−σ

. (6)

We now analyze the utility representation that solves the recursive equation (6). We

focus on the empirically relevant case where σ > 1. Note that with γ < 1, which

is indeed needed for the value of life to be positive, this implies that the ratio 1−σ
1−γ ,

which appears in (6) and in many instances in the following, is negative.

2.3 Solutions to Córdoba and Ripoll’s recursive model

We start with the demographically relevant case, featuring a maximal and finite

lifespan T . After age T , the agent is definitely dead and survival probabilities are
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zero. From an economic standpoint, the value of age T is of no importance, provided

that it is larger than the number of years that a human may realistically live. It

could be for example 200 years or more. Formally, we have πT = 0 and VT+1 = 0,

where the last equality comes from the assumption of zero utility for death, V = 0.

We can compute V0 by backward induction. First, we compute VT from equation (6),

for all zT ≥ 0 and obtain:

VT =
[
z1−σ
T + β0

1−σ
1−γ 01−σ

] 1
1−σ = 0,

since σ > 1 > γ. Similarly, at date T −1, we obtain for all zT−1 ≥ 0 and πT−1 ∈ [0, 1]:

VT−1 =
[
z1−σ
T−1 + βπ

1−σ
1−γ
T−101−σ

] 1
1−σ

= 0.

By induction we then have Vt = 0 for all t, irrespective of consumption levels and

mortality rates. Assuming a finite upper bound on lifespan therefore implies that

the only solution to recursion (6) is the constant zero utility.

Furthermore, this result still holds if we relax the assumption of a maximal

lifespan and approximate the distribution of observed lifespan with an “unlimited”

survival pattern, where survival rates become low at large ages. This statement is

formalized in the following proposition.

Proposition 1 Consider the utility function defined by the recursion (6) with γ <

1 < σ.

1. If there is a maximal lifespan (i.e., there exists T such that πT = 0), the only

solution to (6) is Vt = 0 for all t.

2. When death is never certain and survival probability decreases with age, there

are two cases:

• limt→∞ πt < β
1−γ
σ−1 : the recursion admits a unique solution Vt = 0 for all t;

• limt→∞ πt ≥ β
1−γ
σ−1 : the recursion admits multiple solutions: one being Vt = 0
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for all t, and the other solution being given by:

Vt =
[
β−t

(
Πt−1
j=0πj

)σ−1
1−γ K +

∞∑
s=t

βs−t
(
Πs−1
j=tπj

) 1−σ
1−γ z1−σ

s

] 1
1−σ

, (7)

for some constant K ≥ 0.

Proposition 1, which is proved in Appendix A, states that whenever survival rates

become low at large ages, the only solution to the recursive equation (6) is zero

utility, that is Vt = 0 for all t.

The recursive equation (6) admits a non-zero solution when the model is restricted

to agents whose mortality rates are not greater than 1− β
1−γ
σ−1 . For this solution to

exist, agents should have a life expectancy that is never below 1

1−β
1−γ
σ−1

, no matter

their age.4 Consequently, the utility function (7), solution to (6), could be used in

a model of perpetual youth, but not in a life-cycle model that accounts for actual

mortality profiles.

2.4 Implications of Córdoba and Ripoll’s approach

As mentioned in our introductory example in Section 2.1, it can be tempting to

compute the first-order conditions implied by a recursive utility function, without ad-

dressing convergence issues. We explore below the implications of such a computation

when starting from equation (6).

Survival probability and the utility of consumption. First, let us compute

the marginal rate of substitution (MRS, henceforth) between consumption in period

t+ 1 and consumption in period t. Ignoring definitional issues, equation (6) implies:

∂Vt
∂zt+1

/
∂Vt
∂zt

= βπ
1−σ
1−γ
t z−σt+1z

σ
t . (8)

4By way of illustration, taking β = 0.97, σ = 2.0, and γ = 0.5 implies that agents’ life expectancy
should remain above 65 years, independent of their age.
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When γ < 1 < σ, this MRS is decreasing with the survival probability πt. Formally:

∂

∂πt

(
∂Vt
∂zt+1

/
∂Vt
∂zt

)
< 0. (9)

Equation (9) states that the less likely survival is at a given age, the more the

agent wants to save resources for consumption at that age. The approach therefore

involves assuming that consumption at a given age and survival at that same age are

substitutes – while complementarity could be expected given the absence of bequest

motive and thus of “utility of consumption” after death. In the limit case where

πt → 0 (death is almost sure at the end of period t), we find that ∂Vt
∂zt+1

/
∂Vt
∂zt
→∞.

Thus, a marginal increase in consumption would be infinitely more valuable in

period t + 1 than in period t, in spite of the fact that survival in period t + 1 is

extremely unlikely. This seems counter-intuitive, and is at odds with what the

additive expected utility model suggests.5 As is discussed below, such a MRS

eventually yields counterfactual predictions.

Optimal life-cycle consumption profiles. Consider the standard life-cycle

consumption-saving problem studied in Section 3 of CR. To simplify the prob-

lem, assume that there is no leisure or health in the analysis, no binding borrowing

constraint, and no annuity market, so that the agent’s program can be written as:6

Vt(wt, πt) = max
zt,wt+1

(
z1−σ
t + βπ

1−σ
1−γ
t Vt+1(wt+1, πt+1)1−σ

) 1
1−σ

,

s.t. yt + wt = zt + 1
1 + r

wt+1, (10)

where yt and wt denote income and wealth in period t, respectively. Savings are

assumed to pay a constant riskless return 1 + r.

5With the additive utility model (4), ∂V
add
t

∂zt+1

/
∂V addt

∂zt
= βπtz

−σ
t+1z

σ
t . The MRS thus increases with

survival probability and tends to zero when the survival probability πt becomes infinitesimally
small.

6To make the link with CR, set zt = ct, wt = at, and Ht = 1 in their equation (11). We study
the impact of health in the next paragraph.
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Using first-order conditions, CR derive:7

zt+1

zt
=
(
β(1 + r)π

1−σ
1−γ
t

) 1
σ

. (11)

CR comment on equation (11), stating that “the effect of higher survival on consump-

tion growth under EZW preferences can be negative, which is not possible under EU”.

This means that if σ > 1 > γ, mortality reduces impatience instead of contributing to

it.8 This is a consequence of the substitutability between consumption and survival

exhibited in equation (9).

We now examine the quantitative implications of equation (11) for consumption

using benchmark parameters and realistic mortality profiles. We assume that the

interest rate is r = 4%. Preference parameters are the same as in Footnote 4, β = 0.97,

σ = 2.0, and γ = 0.5. Mortality rates are those of the total US population in 2018,

as reported in the Human Mortality Database. In Figure 1, we plot the consumption

path implied by the first-order equation (11). For the sake of comparison, we also

plot the consumption path implied by standard additive expected utility model (also

assuming β = 0.97 and σ = 2.0). Lifetime wealth is normalized to 1,000,000 USD,

such that the consumption at age 20 for the additive agent is close to 40,000 USD.

This normalization is of little importance, because preferences are homothetic. The

CR profile exhibits a consumption level that remains extremely low until age 100, but

that sky-rockets after that. It is extremely different from the one obtained with the

additive specification. Note that the y-axis is truncated at 50,000 USD for readability

reason but under the CR model, consumption in fact reaches 98,000 USD at age 100

and 14,000,000 USD at age 110.

In a complementary analysis, Zhang et al. (2018) also remark that with the

solution (11), the parameter σ, which is the inverse of the IES, may end up playing

an unexpected role, qualitatively inconsistent with what would be obtained with an
7Cf. equation (15) in their paper.
8In absence of annuities, survival probabilities have no impact on the budget constraint. The

impact of survival probabilities on the optimal consumption profile then reflects a pure impatience
effect.
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Figure 1: Consumption profiles implied by the additive and the CR models.

additive model. For example, when β(1 + r) = 1, (11) implies a rate of consumption

growth equal to 1−σ
σ

log(πt). This growth rate is always positive when σ > 1 and

increases with σ. Thus, instead of moderating the variations of consumption over

time, a low IES would in fact amplify such variations.

Age-dependent health. In order to circumvent the difficulties highlighted above,

CR introduce an age-dependent variable Ht, which is interpreted as health. The

recursive equation (6) becomes:

Vt =
[
Htz

1−σ
t + βπ

1−σ
1−γ
t V 1−σ

t+1

] 1
1−σ

. (12)

Since Ht depends on t, there are enough degrees of freedom to match any possible

consumption profile. In principle, a rapidly declining profile Ht could potentially alter

the counterfactual implications discussed above. However, with σ > 1, specification

(12) assumes that utility decreases (rather than increases) with Ht, which hinders
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the interpretation of Ht as health.9 In a similar vein, Córdoba et al. (2020) introduce

age-dependent discount factors (βt)t≥0 which, as they explain, should decrease with

age (when σ > 1) to counteract the term π
1−σ
1−γ
t . In other words, to avoid the pattern

shown in Figure 3, one would have to assume that pure time preferences (which

would govern impatience in absence of mortality risk) become rapidly stronger with

age, so as to compensate for the implausible mortality effect discussed above.

The calibration of the “health parameters” (or of the time-varying discount

factors βt in Córdoba et al., 2020), and issues related to their potential endogeneity,

may play a decisive role when discussing the impact of (exogenous or endogenous)

mortality changes. Compare, for example, the utility functions in the CR model and

the standard additive specification of Murphy and Topel (2006):

Vt =
[ ∞∑
τ=t

βτ−t
(
Πτ−1
j=t πj

) 1−σ
1−γ Hτz

1−σ
τ

] 1
1−σ

(CR’s model),

V MT
t =

∞∑
τ=t

βτ−t
(
Πτ−1
j=t πj

)
HMT
τ

(
z1−σ
τ

1− σ + ul

)
(Murphy and Topel’s model).

CR calibrate the health profile so as to obtain the same consumption profile as Murphy

and Topel (2006). In other words, they first set Ht =
(
Πt−1
j=0πj

)σ−γ
1−γ HMT

t , where HMT
t

is the health profile chosen by Murphy and Topel (2006). A key point, however, is

that they then assume the profile Ht to be exogenous and independent of survival

rates when looking at the impact of mortality changes. This ultimately results in

the two models forming radically different conclusions regarding the consequences of

mortality decline. Murphy and Topel’s model predicts that a decline in mortality

would significantly increase the propensity to save (agents become more patient when

survival probabilities increase), while the effect is much smaller or even opposite in

the CR model (agents become more impatient when survival probabilities increase).10

9Another option would be to consider Vt =
[
h1−σ
t z1−σ

t + βπ
1−σ
1−γ
t V 1−σ

t+1

] 1
1−σ

. In such a case, ht
would positively contribute to utility, but matching empirical consumption profiles would require
this health profile ht to increase and converge to ∞ at old ages. Again, this would be inconsistent
with the interpretation of h as health.

10Longevity extension also generates an income effect that adds to the impatience effect we
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Opting for one specification over the other will thus provide very different views

regarding the impact of population aging. While both models match the same

calibration targets, the implicit assumptions they make about the role of health

(considered as “good” in Murphy and Topel and as “bad” in CR) cause them to

reach opposite conclusions.

Willingness to pay for mortality risk reduction. We now turn to the MRS

between survival and consumption, which we will refer to as the willingness to pay

for mortality risk reduction.11 From equation (6), we obtain:

∂Vt
∂πt

/
∂Vt
∂zt

= 1
1− γ z

σ
t βπ

γ−σ
1−γ
t V 1−σ

t+1 . (13)

With γ < 1 < σ, the willingness to pay for mortality risk reduction is decreasing in

the continuation utility Vt+1:

∂

∂Vt+1

(
∂Vt
∂πt

/
∂Vt
∂zt

)
< 0. (14)

Equation (14) means that as the possible future loss (measured by continuation

utility Vt+1) increases, the agent will be less willing to avoid the loss. At the extreme,

the agent has an infinite willingness-to-pay to marginally increase survival probability

when she knows that she will consume nothing and be miserable if she survives

(Vt+1 = 0). Conversely, this willingness-to-pay is zero when she knows that she will

consume huge amounts and have a superb life if she survives (Vt+1 =∞). Here again,

the results are at odds with those obtained when using an additive expected utility

specification, and with economic intuition. For example with the model of Murphy

emphasize, which explains why the overall impact can be ambiguous.
11The Environmental Protection Agency advises using this terminology, rather than the “value of

a statistical life” (VSL). Note, moreover, that the literature generally defines VSL as the marginal
rate of substitution between survival and wealth (and not consumption). In the absence of an
annuity, this makes no difference and VSL, as usually defined, also equals the MRS shown in (13).
When annuities are available, we have to account for the fact that lowering mortality rates may
reduce the return of annuities. An adjustment must therefore be made. For example, with a perfect
annuity market, VSL is the difference between the MRS (13) and the amount invested in annuities.
The adjustment is independent of the agent’s preferences, and would therefore have no impact on
the subsequent discussion.
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and Topel shown above, we have:

∂V MT
t

∂πt

/
∂V MT

t

∂zt
= zσt
HMT
t

∞∑
τ=t+1

βt
(
Πτ−1
j=t+1πj

)
HMT
τ

(
z1−σ
τ

1− σ + ul

)
,

implying that the value of mortality risk reduction increases with future consumption

levels: expecting a nice future makes survival more valuable.

3 Investigating the limit-model when V → 0

A way to (partially) fix the convergence issues discussed in Section 2 involves using

the non-homothetic recursion (5) and taking the limit where V → 0. Such a limit is

actually considered in Section 5 of CR, but as we explain below, the mathematical

statements when considering this limit are incorrect.

For any V > 0, if we assume that there is a finite maximal length of life, the

recursion (5) provides a well-defined and non-zero sequence of utilities (Vt)t≥0, from

which we can compute optimal life-cycle consumption profiles and the value of

mortality risk reduction. Looking at the limit where V → 0 (if it exists) may then

provide a robust theoretical foundation for the study of the case where V = 0. We

explore this possibility below, focusing again on the case where γ < 1 < σ.

Formally, starting from recursion (5), we renormalize the utility representation

by setting Wt = Vt/V . The utilities (Wt)t≥0 fulfill the recursion:

Wt =
[(
zt
V

)1−σ
+ β

(
πtW

1−γ
t+1 + 1− πt

) 1−σ
1−γ

] 1
1−σ

. (15)

The mistake in CR involves assuming that when V → 0, we necessarily have

Wt+1 →∞ since Wt+1 = Vt+1/V .12 With such an assumption recursion (15) would
12See page 1503 in CR, where it is explained that the ratio V /Vt+1 which appears in the first

equation of their Section 5.1 collapses to zero when V → 0. This, however, does not take into
account that Vt+1 also tends to zero when V → 0, yielding a ratio V /Vt+1 whose limit is of
an indeterminate form 0

0 . In fact, as we will explain below, limlimV→0
V
Vt+1

6= 0, implying that
limlimV→0 Wt+1 is actually finite. Note that the limit V → 0 is also considered in Córdoba et al.
(2020), but only when σ = 1. For σ = 1 the statement V /Vt+1 → 0 is correct. That would also be
true for σ < 1, but the issues for σ > 1 are no different in Córdoba et al. (2020) than in CR.
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yield:

Wt '
[(
zt
V

)1−σ
+ βπ

1−σ
1−γ
t W 1−σ

t+1

] 1
1−σ

(16)

with solution Wt ' 1
V

∑∞
s=t β

s−t
(
Πs−1
j=tπj

) 1−σ
1−γ z1−σ

s . As explained in CR, this would

lead us back to the formulation they use (up to the scaling factor 1
V

) to deal with

the case where V = 0. Said differently, their analysis for the case where V = 0

could be obtained by continuity from the cases where V > 0. The definitional issues

highlighted in Section 2.2 of the current paper would not be worrisome since models

with V > 0 are well-defined and would converge towards their preferred specification.

However, when V → 0, Vt also tends to zero, and the ratio Vt/V converges to

a finite limit, and not to ∞. Indeed since σ > 1, we have limV→0
(
zt
V

)1−σ
= 0.

Equation (15) therefore implies that limV→0Wt = χt where (χt)t≥0 is defined by:

χt = β
1

1−σ
(
πtχ

1−γ
t+1 + 1− πt

) 1
1−γ . (17)

If β
1−γ
1−σπt < 1 for large t (which holds in case of a finite life), the forward recursion

admits a unique solution, which is finite for all t. The approximation (16) does not

hold, meaning that the specification CR attributes to the case V = 0 is different

from the limit obtained when considering the limit V → 0.

This matters for economic implications. To illustrate this, let us compute marginal

rates of substitutions implied by the recursive representation (15) when V → 0.

Since limV→0Wt = χt, we obtain that when V → 0:

∂Wt

∂zt+1
∂Wt

∂zt

= βπt
(
πt + (1− πt)W γ−1

t+1

) γ−σ
1−γ

(
zt+1

zt

)−σ
, (18)

→V→0 βπt
(
πt + (1− πt)χγ−1

t+1

) γ−σ
1−γ

(
zt+1

zt

)−σ
, (19)

and
∂Wt

∂πt
∂Wt

∂zt

= V 1−σ β

1− γ z
σ
t

(
W 1−γ
t+1 − 1

) (
πtW

1−γ
t+1 + 1− πt

) γ−σ
1−γ →V→0 ∞.

Thus, the limit obtained when V → 0 corresponds to a setting where the value of

mortality risk reduction tends to infinity, while the marginal rate of substitution
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between consumption in period t + 1 and consumption in period t converges to a

well-defined finite limit that depends on the survival and consumption patterns.

Note that the MRS in (19) tends to zero when πt tends to zero. This means

that if survival from period t to period t + 1 is very unlikely, the agent values an

increase in consumption in period t much more than an increase in consumption in

period t+ 1. While consistent with the additive model and economic intuition, this

is contrary to the conclusions of CR, who consider that the MRS in the case where

V = 0 is βπ
1−σ
1−γ
t

(
zt+1
zt

)−σ
, implying that the MRS would actually tend to ∞ (and not

0) when πt → 0. It can be observed that CR expression for the MRS can be obtained

as the limit of equation (18) for V → 0, if it is assumed that limV→0Wt+1 = ∞,

which as we explain above does not hold.

When employed in applications, the limit model where V is taken to be infinitesi-

mally small yields predictions that are relatively close to those of the additive model,

but very different from the predictions obtained with CR specification. These aspects

are illustrated in Figure 2 where we see that the limit- and additive models provide

decreasing or hump-shaped consumption profiles (because mortality increase with

age), in sharp contrast to the increasing consumption profile predicted by CR model.

Note that, as in Figure 1, the y-axis is still truncated at 50,000 USD for readability

reason.

Overall, we find that solving the issues outlined in Section 2.2 by considering the

limit V → 0 yields a model where consumption and survival are complementary, but

where the willingness to pay for mortality risk reduction is infinite (thus unsuitable

for dealing with endogenous mortality choice). If this discussion helps to clarify the

issues in CR and HPSA, it does not provide a convenient recursive framework for

dealing with endogenous mortality choices.
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Figure 2: Consumption profiles implied by the additive, the CR, and the V → 0-limit
models.

4 Studying the value of life with recursive models

The conclusion of our discussion should not be that recursive models are unsuitable

for studying the value of mortality risk reduction. Recursive methods can be excellent

tools for studying the value of life and intertemporal choice in a context of uncertain

lifetime. Some theoretical aspects need however to be considered thoroughly.

4.1 An infinite horizon for finitely-lived agents

Recursive models usually assume an infinite horizon or a fixed finite horizon. However,

to model choices under uncertain lifespans, we need to consider lives of unequal

lengths, which is fundamentally different from an infinite or fixed horizon setting.

There is a simple way to circumvent this difficulty. Instead of describing a life as a

finite sequence of consumption periods, we can view a life as an infinite sequence

of per-period “realizations”, where each realization is either “being dead” or “being

alive, with some positive consumption”. Mathematically speaking, the set of possible

per-period realizations is R+ ∪ {d}, where d is a symbol used to denote “being dead”.
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A life is then represented by a sequence in the form:

(z0, . . . , zT , d, d, . . .) ∈ (R+ ∪ {d})∞, (20)

for some T . Sequence (20) corresponds to a lifespan of T + 1 with consumption

profile (z0, . . . , zT ) ∈ RT+1
+ . Formally, if one excludes resurrection and immortality,

the set of possible lives, denoted by L, is defined as follows:

L = {(zt)t≥0 ∈ (R+ ∪ {d})∞ : ∃T ∈ N,∀t ≥ T, zt = d and ∀t < T, zt ∈ R+} . (21)

As the set L is a subset of an infinite product space, recursive methods can be used

in the standard way. We must, however, bear in mind that the underlying product

space is not R∞+ , as is usually the case, but (R+ ∪ {d})∞. This means that period

utility functions have to be defined on R+ ∪ {d}, and not on R+. Moreover, in

contrast to the usual case, the set R+ ∪ {d} is not convex, which may raise some

technical issues.

4.2 Recursive models with mortality

Nearly all applied studies using recursive methods rely on the framework of Kreps

and Porteus (1978) and assume a parametric form that can be expressed as:

Ut = f−1((1− β)u(zt) + βφ−1(E[φf(Ut+1)]), (22)

where β ∈ (0, 1) is a time preference parameter, φ is an increasing function repre-

senting risk preferences, E[·] denotes the expectation operator, and u : R+ ∪ {d} →

R∪{−∞,∞} is the period utility function.13 The function f is only a normalization

device and can be any increasing function, with no impact on preferences. For

example, CR use f(x) = x1−σ

1−σ , but it is also possible to use f(x) = φ−1(x), as in

Kreps and Porteus (1978), or simply f(x) = x, which we will use in the following.

We now discuss how to further parameterize the functions u and φ. It is important
13Cases where the function u may take infinite values (−∞ or ∞) are perfectly possible if φ(−∞)

or φ(∞) are well-defined.

20



to note that, for the model to be well-defined, the function φ must have a domain

that includes both Im(u) = u(R+ ∪ {d}) and its convex hull, which may be strictly

larger (in the sense of set inclusion) than Im(u). Indeed, since R+ ∪ {d} is not

convex, there is no reason for Im(u) to be convex.

For our discussion, it is useful to consider conditional utilities, which are the

utilities obtained conditionally on being dead or on being alive. For a dead agent,

we simply get Ut(d, d, . . .) = u(d), which is the value of the period utility function,

u, in the death state, d. Plugging this into (22), we find that the utilities of alive

agents, denoted by Vt, are linked through the following recursion:

Vt = (1− β)u(zt) + βφ−1 (πtE[φ(Vt+1)] + (1− πt)φ(u(d))) , (23)

where, as before, zt ∈ R+ is the consumption at time t and πt is the survival

probability between dates t and t+ 1. Note that – with a slight abuse of notation –

we still denote the expectation operator by E[·], although mortality risk is now

treated separately.14

4.3 The parametrization of the functions u and φ

We now discuss popular specifications of the functions u and φ. Obviously, other

specifications are possible, as long as the domain of φ is carefully chosen.

4.3.1 The period utility function u

A common specification is the case where preferences exhibit a constant IES. Formally,

this means that−zu
′(z)

u′′(z) , for z ∈ R+, is independent of z; or equivalently, by integration,

that for z ∈ R+, we have u(z) = K z1−σ

1−σ + ul, where σ is the inverse of the IES and
14Treating mortality separately is possible as long as mortality is independent of other risks.

21



K and ul are two constants. The function u, defined over R+ ∪ {d}, is then:
u(z) = K z1−σ

1−σ + ul for z ∈ R+,

u(d) = ud,

(24)

for some K > 0, ul ∈ R, and ud ∈ R ∪ {−∞,∞}. Setting K = 1 corresponds to a

normalization that is always possible. We can further normalize the function u by

setting either ul = 0 or ud = 0. But imposing an additional relation between ul and

ud (such as ul = ud) goes beyond a mere normalization. In particular, this would

constrain the value of life. In other words, one can freely constrain ul, or alternatively

ud, but constraining both simultaneously is not without loss of generality.

4.3.2 The risk aversion function φ

The function φ needs to be properly defined on the convex hull of Im(u) = u(R+)∪ud,

and it needs to be increasing.15 We discuss below three of the most common functional

forms that can be found in the literature for φ: (i) affine, (ii) isoelastic, and (iii)

exponential. We further assume specification (24) for the period utility function u.

Affine φ. Defining φ as an affine function is probably the most common choice in

the literature on the value of life, and corresponds to the standard additive expected

utility model of Yaari (1965). It is most often associated with the normalization

ud = 0, but renormalizing u by adding the same constant to both ul and ud, while

keeping φ unchanged, would have no impact on preferences. With ud = 0 the

recursion (23) defining the utility function of alive agents can be expressed as follows:

Vt = (1− β)
(
z1−σ
t

1− σ + ul

)
+ βπtE[Vt+1].

15The function φ, which governs both risk aversion and preference for the timing of resolution
of uncertainty, does not have to be concave. It follows from Theorem 3 of Kreps and Porteus
(1978) that preferences exhibit preference for early (resp. late) resolution if the function x 7→
φ((1− β)u(c) + βφ−1(x)) is convex (resp. concave).
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Additionally requiring that ul = 0 might seem appealing for tractability reasons,

but the value of life would then be mostly pinned down by β and σ. Moreover, if

σ > 1 and ul = ud = 0, the value of life is always negative, independent of the

consumption level, which is a very undesirable property when studying value of

life matters. Independently of the value of ul, a well-known limitation of the affine

specification is that risk aversion and IES are intertwined.

Isoelastic φ. This corresponds to the EZW preferences. One difficulty with

isoelastic functions relates to their definition sets. These functions are never defined

on the whole set R but either only on R+ (e.g., φ(x) = x1−α

1−α ) or only on R− (e.g.,

φ(x) = − (−x)1−α

1−α ). Since φ needs to be defined on the convex hull of u(R+) ∪ ud,

the model is well-defined if and only if z1−σ
t

1−σ + ul and ud always have the same sign.

This implies that ul and ud must have the same sign as 1 − σ. All the studies

using isoelastic functions φ that we are aware of set ul = 0. Using the notation

ε = sign(1 − σ), the recursion (23) defining the utility function Vt of alive agents

can be expressed as follows:

Vt = (1− β) z
1−σ
t

1− σ + εβ
(
πtE[(εVt+1)1−α] + (1− πt) (εud)1−α

) 1
1−α . (25)

In such a model, setting ud = 0 or ud = ε∞ is technically possible. Both options are

actually found in the literature, as this is the only way to recover homotheticity. For

example, CR specification involves setting ud = −∞ if σ > 1 and ud = 0 if σ < 1.16

But setting ud = 0 or ud = ε∞ represents a severe restriction on preferences. Indeed,

apart from the case where σ < 1, α < 1, and ud = 0, this generates models that

either imply constant utilities (independent of consumption choice) or exhibit a value

of life that is always negative.

Exponential φ. As shown in Bommier et al. (2017), assuming that preferences

are monotone with respect to first-order stochastic dominance implies that the
16Remember that CR use a different normalization, so that their V is related to ud by ud = V 1−σ

1−σ .
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function φ has an exponential form, with φ : x 7→ 1−e−kx
k

, k 6= 0,17 yielding so-called

risk-sensitive preferences. Such preferences were initially introduced by Hansen and

Sargent (1995) in an infinite horizon setting and later adapted to the problem of

intertemporal choice under uncertain lifespan in Bommier (2014) and Bommier et al.

(2020).18 Since the function φ : x 7→ 1−e−kx
k

is well-defined and increasing on the

whole set R, there is no domain problem. Indeed, φ is defined on the convex hull of

u(R+) ∪ ud, regardless of the choice of u and ud. Moreover, we can easily check that,

when φ is exponential, re-normalizing u by adding the same constant to both ul and

ud, while keeping φ unchanged, has no impact on preferences. We can therefore set

ud = 0 without loss of generality. The utility Vt is then obtained by the following

recursion:

Vt = z1−σ
t

1− σ + ul −
β

k
log(πtE[e−kVt+1 ] + 1− πt), (26)

where the parameter k drives risk aversion.

The risk-sensitive specification (i.e., the case of an exponential function φ) offers

a theoretically appealing framework, in which preferences are always well-defined

and monotone. Flexibility is afforded by four degrees of freedom: σ, k, β, and ul,

which determine the IES, risk aversion, time preferences, and the utility gap between

life and death (and thereby the value of life), respectively. The value of life can then

be calibrated by choosing ul.

As shown in Figure 3, risk-sensitive preferences generate plausible hump-shaped

consumption profiles.19 The predictions diverge from those of the additive model,

because of the role of risk aversion which is extensively discussed in Bommier et al.

(2020). The difference remains however quantitatively limited and would actually
17The case k = 0 corresponds to an affine φ.
18The “multiplicative preferences” axiomatized in Bommier (2013) can also be viewed as a

particular case of risk-sensitive preferences where β is set to 1. Such preferences can match empirical
consumption profiles and have been used in Bommier and Villeneuve (2012) and Bommier and
LeGrand (2014) to study the value of life and the demand for annuities, respectively.

19For the calibration, we chose the value of k from Bommier et al. (2020) calibrated using annuity
data and set ul such that the value of life at 45 is 300 times the consumption at age 45. Note that
as explained in Bommier et al. (2020), the results are not very sensitive to the precise target of the
value-of-life calibration (as long as this target is large enough).
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Figure 3: Consumption profiles implied by the additive and the RS models.

vanish if assuming k to be very small.

Further implications regarding portfolio choice and annuity demand are discussed

in Bommier et al. (2020). In such a framework the value of mortality risk reduction

has the following expression:
∂Vt
∂πt
∂Vt
∂zt

= β

k
zσt

1− E[e−kVt+1 ]
πtE[e−kVt+1 ] + 1− πt

. (27)

We observe in particular that the willingness to pay for mortality risk reduction is

increasing in the continuation utility Vt+1. This means that people will make higher

investment to reduce their mortality risk if they expect a nice future rather than

a poor one. This is in line with what additive models suggest and with economic

intuition but contrasts with the predictions discussed in Section 2.4.

An extension to account for ambiguity and ambiguity aversion. Interest-

ingly, the risk-sensitive framework can easily be extended to account for ambiguity

aversion while preserving monotonicity and differentiability (and hence tractability).

A detailed presentation can be found in Bommier and LeGrand (2014) and an
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application to annuity investment features in André et al. (2020).

When the survival probability is imperfectly unknown, and described by a random

variable π̃t, the utility can be defined by the following recursion:

Vt = z1−σ
t

1− σ + ul −
β

kA
log

(
Eπ̃t

[
exp

(
kA
kR

log
(
π̃tE[e−kRVt+1 ] + 1− π̃t

))])
, (28)

where kA is the ambiguity aversion coefficient and kR is the risk aversion coefficient.

The operator Eπ̃t [·] is the expectation over π̃t. With kA = 0 (ambiguity neutrality),

the model reduces to the risk-sensitive specification (26) with k = kR and πt = E[π̃t]

(under ambiguity neutrality only the average survival probability matters). The

additive model (4) is obtained when kA = kR = 0. When kR = 0 and kA > 0 we get:

Vt = z1−σ
t

1− σ + ul −
β

kA
log

(
Eπ̃t [exp(−kAπ̃tE[Vt+1])]

)
. (29)

To connect this specification to the previous literature, note that (29) can be rewritten:

Vt = φ−1
(
Eπ̃t [φ (u(zt) + βπ̃tE[Vt+1])]

)
,

where φ(x) = exp(−kA
β
x) and u(zt) = z1−σ

t

1−σ + ul. Written in such a way, the model

appears to be a multi-period version of the Treich (2010) and Bleichrodt et al. (2019)

models, while assuming constant absolute ambiguity aversion (which is necessary

for preference monotonicity in multi-period settings), and additive separability of

preferences under risk.20 The more general monotone specification, given in (28),

relaxes the assumption of additive separability of preferences under risk. As illustrated

in André et al. (2020), this model can be used to jointly analyze the impacts of risk

and ambiguity aversion.

In our view, the specification (28) is the best way to extend the standard ad-
20The Treich (2010) and Bleichrodt et al. (2019) models also feature a bequest motive, which we

have not considered so far. To account for bequest motives specification (28) should be replaced by:

Vt = z1−σ
t

1− σ + ul −
β

kA
log
(
E
π̃t

[
exp

(
kA
kR

log
(
π̃tE[e−kRVt+1 ] + (1− π̃t)E[e−kRWt+1 ]

))])
,

where Wt+1 would be the utility derived from bequests in period t+ 1.
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ditive specification, affording flexibility to account for risk and ambiguity aversion.

Importantly, it maintains two fundamental features of the additive specification:

recursivity and monotonicity. The former, recursivity, is key for tractability. The

latter, monotonicity, has long been considered as inherent to rationality (see e.g.,

Arrow, 1951) and helps to get an intuitive understanding of the role of risk and ambi-

guity aversion (Bommier et al. 2017). Whether one should use such the specification

(28), or focus on simpler versions with kA or/and kR set to zero involves considering

a very common trade-off: Additional flexibility brings new insights, but also makes

the calibration more challenging.
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Appendix

A Proof of Proposition 1

Assume, for example, that there exists t0 ≥ 0 such that Vt0 > 0. It is then necessarily

the case that Vt > 0 for all t > t0.
21 Now, let us rewrite equation (6) as:

V 1−σ
t+1 = β−1π

σ−1
1−γ
t

(
V 1−σ
t − z1−σ

t

)
.

By iteration, we obtain that for all t > t0:

V 1−σ
t = β−t

(
Πt−1
j=t0πj

)σ−1
1−γ

V 1−σ
t0 −

t−1∑
s=t0

βs
(
Πs−1
j=t0πj

) 1−σ
1−γ z1−σ

s

 . (30)

Consider now the case where t → ∞, while holding t0 constant. Assuming that

consumption is bounded from above, the right-hand side of (30) becomes negative,

since ∑t−1
s=0 β

s
(
Πs−1
j=0πj

) 1−σ
1−γ z1−σ

s diverges (as we are considering the case limt→∞ πt =

0), while the left-hand side has to be positive. We thus obtain a contradiction,

proving that there cannot exist a t0 for which Vt0 > 0. This impossibility result holds

when βπ
1−σ
1−γ
t > 1 for large t.22

B Hugonnier, Pelgrin and St-Amour (2013) spec-

ification

The contribution of HPSA is more involved than that of CR because continuous-time

modeling requires more advanced mathematics. But if we restrict our attention
21We previously established that if Vt = 0, then Vτ = 0 for all τ ≤ t.
22A different way to prove this is by a fixed-point argument. When all Vt are positive, V 1−σ

t

is defined by the linear recursive equation V 1−σ
t = z1−σ

t + βπ
1−σ
1−γ
t V 1−σ

t+1 , which is a contraction if

and only if βπ
1−σ
1−γ
t < 1 for t sufficiently large. When 1− βπ

1−σ
1−γ
t is negative for large t, the linear

recursive equation does not define a proper V 1−σ
t . It is worth noting that the term 1 − βπ

1−σ
1−γ
t

occurs in many instances in CR, e.g., in equations (27), (30), and (32), with, however, no mention
that this term may be negative when γ < 1 < σ.

28



to mortality risk while ignoring other risks, the HPSA model can be seen as a

continuous-time limit of the CR model, with the addition of a minimum consumption

level. As such, the model faces the same difficulties when the IES is below one.

To be more explicit, we use the notation of HPSA and build on their Appendix

C.1 “Construction of the utility index” where they use the limit of discrete time

models to derive their continuous-time model. As is explained after equation (C.1),

“the agent’s utility [is required] to drop to zero after death”. Their equation (C.2)

defines utility Ut by recursion over a time interval ∆ > 0. If ∆ is small enough and

in absence of risks other than mortality, Ut can be expressed as:

Ut =
(1− e−ρ∆) (ct − a)1− 1

ε + e−ρ∆π
1− 1

ε
1−γm
t U

1− 1
ε

t+∆

 1
1− 1

ε

, (31)

where ε > 0 is the IES, 0 ≤ γm < 1 is a risk aversion parameter, ρ > 0 the rate

of time-discounting, a ≥ 0 a subsistence consumption level, and πt the survival

probability.23 We consider again the case where the IES is below 1 (ε < 1). Note

that – apart from notation and subsistence consumption a – expression (31) is very

close to expression (6) of CR. It is straightforward to deduce that the conclusions

we derived in Proposition 1 for the CR model (6) also apply to the discrete-time

formulation shown in equation (31). Since these conclusions hold for any ∆ and

since the continuous-time utility expression in HPSA is the limit of the discrete-time

version, the continuous-time expression suffers from the same drawbacks that we

discussed in Sections 2.3 and 2.4.

These issues are also visible in the continuation utility that HPSA provide as the

starting point of their paper (equation 10 in their paper). Let us use their equation

for the case where mortality is the only risk and where consumption and mortality

rates are independent of age (a more general analysis can be found in Appendix C).

In that case, continuation utility is a constant U , and the distribution of age at death

Tm, conditional on being alive at age t, has density function λme−λm(Tm−t). Thus,
23Note that the survival probability πt is not explicitly visible in their paper, but embedded in

the certainty equivalent mt(∆) in their equation (C.2).
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combining equations (10), (11), and (13) of HPSA, we find that the continuation

utility U must fulfill:

U =
∫ ∞
t

λme
−λm(Tm−t)

(∫ Tm

t

(
ρU

1− 1
ε

(
((c− a)/U)1− 1

ε − 1
)
− λmγm

1− γm
U

)
dτ

)
dTm.

Since there is no dependence on τ inside the integral, this equation simplifies to:(
λm

1− γm
− ρ

1
ε
− 1

)
U = ρ

1− 1
ε

(c− a)1− 1
εU

1
ε .

In the case where ε < 1, this equation admits a unique (constant) solution U = 0 if

λm ≥ 1−γm
1
ε
−1 ρ, and two solutions, U = 0 and U =

(
1− λm( 1

ε
−1)

ρ(1−γm)

) ε
1−ε

(c− a), otherwise.

Again, this implies that utility is systematically equal to 0 when mortality is not

constrained to be small, and that a non-trivial solution only exists when mortality

rates are constrained to be low. Note that the upper bound on the mortality rate to

have a non-constant solution is similar to the bound that appears in Proposition 1,

except that it is expressed in continuous time.24

HPSA circumvent the problem by focusing on the case where the mortality rate

remains low enough so that a positive solution exists. Indeed, their first theorem is

stated with a condition (equation 24 in their paper) which, when ε < 1 and the only

uncertainty at play is mortality, imposes that:

λm
1− γm

< r + ε

1− ερ. (32)

In such a case, their model predicts that excess consumption, c− a, grows at a rate

equal to ε(r − ρ− 1− 1
ε

1−γmλm). In order to make the link with our Proposition 1, let

us consider the case of a flat optimal consumption (i.e., r = ρ + 1− 1
ε

1−γmλm). Then

condition (32) can be rewritten as:

λm <
1− γm

1
ε
− 1 ρ,

which is also the condition we elicited above for the existence of a positive solution
24If, for example, we set γm = 0.5, ε = 2

3 , and ρ = 0.03, we get that the hazard rate of death λm
has to be below 0.03, implying a life expectancy above 33 years.
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in the stationary case.

HPSA comment the restriction (32) as being “entirely standard [...] except for

the presence of the constant λm
1−γm that reflects the combined impact of mortality risk

and the agent’s aversion to that risk on the optimal consumption schedule” (HPSA,

p. 677). It is, however, noteworthy that this restriction imposes an upper bound

on mortality rates which restricts the model to perpetually young agents, thereby

inhibiting applications with realistic demographic data. Moreover, working with the

positive solution of HPSA leads to conclusions that are in line with those discussed

in Section 2.4. Indeed, as shown in equation (38) in our Appendix C, when a positive

solution exists, the continuation utility at time t is (up to a normalization term)

provided by:

Ut =
ρ ∫ ∞

t
(cτ − a)1− 1

ε e
−
∫ τ
t

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ

 1
1− 1

ε

.

This utility representation features an instantaneous discount rate at age s equal to

ρ+ 1− 1
ε

1−γmλm(s). Thus, with ε < 1, mortality reduces impatience instead of contributing

to it, and consumption and survival display a substitutability property.25 Moreover,

the marginal rate of substitution between survival rate and consumption at time t

(i.e., the value of life) is given by:26

−
∂Ut

∂λm(t)
∂Ut
∂ct(t)

= 1
ρ

1
1− γm

(ct − a) 1
εU

1− 1
ε

t .

Since ε < 1 and γm < 1, the formula shows that the willingness-to-pay for mortality

risk reduction is decreasing with continuation utility. As in the discrete-time case of

CR, we find that the agent who expects to have a miserable life in the future (cτ ' a

for all τ > t) would be willing to pay a lot to survive, but the one who expects to

have an extraordinary life in the future (cτ ' ∞ for all τ > t) would not be willing
25This is consistent with their analysis which explains that, when the IES is below one, the

propensity to consume is decreasing with the mortality rate.
26As HPSA use a continuous time model, we use Volterra derivatives (see Ryder and Heal, 1973)

to compute the marginal rate of substitution.
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to pay anything to increase her survival probability.

To sum up, just like in the discrete-time setup, focusing on the positive solution

requires to restrict the analysis to perpetually young agents with unrealistically low

mortality rates and delivers conclusions which are at odds with economic intuition

and observations.

C HPSA’s utility function in the non-stationary

case

We prove that the solution to the HPSA recursive formulation is still Ut = 0 for all t,

when we relax the assumption of a constant mortality and allow for mortality rates

to change with age. In the case where the only risk is mortality, HPSA recursive

formulation is given by:

Ut = 1{Tm>t}Et
∫ Tm

t

(
ρUτ

1− 1
ε

(
((ct − a)/Uτ )1− 1

ε − 1
)
− λm(τ)γm

1− γm
Uτ

)
dτ. (33)

Note that this specification presupposes that Ut ≥ 0. Denoting by λm(τ) the hazard

rate of death at time τ , the distribution of the age at death, Tm, conditional on being

alive at age t, has a density function λm(Tm)e−
∫ Tm
t

λm(a)da. Thus, we find that the

continuation utility, Ut, must fulfill:

Ut =
∫ ∞
t

λm(Tm)e−
∫ Tm
t

λm(s)ds (34)

×
(∫ Tm

t

(
ρUτ

1− 1
ε

(
((ct − a)/Uτ )1− 1

ε − 1
)
− λm(τ)γm

1− γm
Uτ

)
dτ

)
dTm

or, equivalently, after an integration by parts:

Ut =
∫ ∞
t

e−
∫ τ
t
λm(s)ds

(
ρUτ

1− 1
ε

(
((ct − a)/Uτ )1− 1

ε − 1
)
− λm(τ)γm

1− γm
Uτ

)
dτ.

By differentiation, this gives:

d

dt
Ut =

(
λm(t)
1− γm

+ ρ

1− 1
ε

)
Ut −

ρU
1
ε
t

1− 1
ε

(ct − a)1− 1
ε .
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One solution is Ut = 0. The question is about the existence of solutions that are

not always equal to zero. Remember that the recursive definition presupposes that

Ut ≥ 0 (otherwise equation 33 does not make sense).

Let us assume therefore that there exists a t0 > 0 such that Ut0 > 0. We must

have Ut > 0 on a neighborhood of t0. On this neighborhood the differential equation

can be rewritten as:

d

dt
U

1− 1
ε

t =
(

1− 1
ε

1− γm
λm(t) + ρ

)
U

1− 1
ε

t − ρ (ct − a)1− 1
ε , (35)

where the consumption process (ct)t≥0 is assumed to be bounded and such that

ct > a for all t.

The Cauchy-Lipschitz theorem implies that the linear differential equation (35)

together with the initial condition Ut=t0 = Ut0 > 0 admits a unique solution on a

maximal interval of existence containing t0 in its interior. This maximal interval of

existence is of the form (t−, t+) ∩ R+, with t− ∈ [−∞,∞) and t+ ∈ (−∞,∞]. The

solution of the linear differential equation (35) is given by:

U
1− 1

ε
t = e

∫ t
t0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds(
U

1− 1
ε

t0 − ρ
∫ t

t0
(cτ − a)1− 1

ε e
−
∫ τ
t0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ
)
, (36)

for all t ∈ (t−, t+), which has to be strictly positive. From equality (36), we deduce

that e−
∫ t
t0

(
ρ+ 1− 1

ε
1−γm

λm(a)
)
da
U

1− 1
ε

t is decreasing (when defined). Therefore, U1− 1
ε

t is

well-defined and strictly positive for all t ≤ t0, and 0 belongs to the maximal interval,

which can thus be written as [0, t+). Without loss of generality, we can rewrite U1− 1
ε

t

using the initial condition Ut=0 = U0 > 0. We have for all t ∈ [0, t+):

U
1− 1

ε
t = e

∫ t
0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds

U1− 1
ε

0 − ρ
∫ t

0
(cτ − a)1− 1

ε e
−
∫ τ

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ

. (37)

Remember that the issue is whether t+ = ∞ (existence of a non-constant global

solution) or not (the only global solution is Ut = 0). From now on, we restrict our

attention to the case where consumption is bounded from above, and the hazard

rate of death λm(s) is increasing with age s after a given age. There are then two
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possibilities depending on the value of lim t→∞e
−
∫ t

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds.

Case 1. If lim t→∞e
−
∫ t

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds =∞ (for instance implied by lim t→∞λm(t) >

ρ1−γm
1
ε
−1 , remember that ε < 1), since (ct) is bounded, there exists tm, such that we

have ρ
∫ tm
0 (cτ−a)1− 1

ε e
−
∫ τ

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ = U

1− 1
ε

0 and U1− 1
ε

tm = 0 and for all t ≥ tm,

Ut ≤ 0. As a consequence, t+ ≤ tm and there exists no global strictly positive solution

on R+.

It is noteworthy that from (37), we can deduce that if lim t→∞λm(t) > ρ1−γm
1
ε
−1 , the

only nonnegative global solution corresponds to U1− 1
ε

0 =∞, or equivalently, U0 = 0,

which in turn implies Ut = 0 for all t ≥ 0.

Case 2. If lim t→∞e
−
∫ t

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
<∞ (for instance implied by lim t→∞λm(t) <

ρ1−γm
1
ε
−1 ), setting U1− 1

ε
0 = K + ρ

∫∞
0 (cτ − a)1− 1

ε e
−
∫ τ

0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ , with K ≥ 0,

guarantees that U1− 1
ε

t ≥ 0 for all t ≥ 0. We have then for all t ∈ [0, t+):

Ut =
Ke∫ t0

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds + ρ

∫ ∞
t

(cτ − a)1− 1
ε e
−
∫ τ
t

(
ρ+ 1− 1

ε
1−γm

λm(s)
)
ds
dτ

 1
1− 1

ε

, (38)

which is a global solution on R+.27 We can set t+ = ∞. Note that Ut = 0 for all

t ≥ 0 is still another global solution on R+.

27As in the CR case, the choice of K can be seen as a normalization with no impact on utility
maximization.
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