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Abstract

We explore the set of preferences defined over temporal lotteries in an
infinite horizon setting. We provide utility representations for all preferences
that are both recursive and monotone. Our results indicate that the class
of monotone recursive preferences includes Uzawa-Epstein preferences and
risk-sensitive preferences, but leaves aside several of the recursive models
suggested by Epstein and Zin (1989) and Weil (1990). Our representation
result is derived in great generality using Lundberg (1982, 1985)’s work on
functional equations.
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1 Introduction

Intertemporal decisions lie at the heart of many applied economic problems. It
is well understood that the analyses of such problems and the related policy rec-
ommendations depend critically on the structure of the intertemporal utility func-
tions, and therefore on the underlying decision theoretic assumptions. A popular
assumption, first introduced by Koopmans (1960) in a deterministic setting, is sta-
tionarity. It implies that an agent can, at all dates, evaluate future prospects using
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the same history and time-independent preference relation and be time-consistent.
In the presence of uncertainty, stationarity is most often complemented by the
assumption of recursivity, allowing one to preserve time consistency and history
independence. Recursivity is moreover extremely useful in applications, as it per-
mits the use of dynamic programming methods. The assumptions of stationarity
and recursivity, although of a different nature, are so often coupled together that
the single adjective “recursive” is typically used to describe their conjunction.

The so-called recursive preferences are the object of analysis in the current
paper. More precisely, we study recursive preferences that satisfy another assump-
tion, monotonicity, resulting in the class of monotone recursive preferences. As
Chew and Epstein (1990, p. 56) explain, monotonicity (called “ordinal dominance”
in their paper) roughly “states that if two random sequences, C and Ĉ, are such
that in every state of the world, the deterministic consumption stream provided
in C is weakly preferred to that provided in Ĉ, then C should be weakly preferred
to Ĉ.” Equivalently, the axiom requires that a decision maker would not choose
an action if another available action is preferable in every state of the world. Sec-
tion 3 of the current paper provides further discussion of the axiom, while Section
6 illustrates its implications in the context of a two-period consumption-savings
problem.

Preferences induced by the additively separable expected utility model with
exponential discounting, by far the most widely used model of intertemporal choice,
are both monotone and recursive. This model has however been criticized for its
lack of flexibility and in particular for being unable to disentangle risk aversion
from the degree of intertemporal substitution. The search for greater flexibility
has led researchers to consider either non-recursive or non-monotone preferences.
For example, Chew and Epstein (1990, p. 56) explain that “given the inflexibility
of the [intertemporal expected utility function] we are forced to choose which of
recursivity and ordinal dominance to weaken”. Chew and Epstein (1990) explore
preferences that are monotone but not necessarily recursive, while Epstein and
Zin (1989) consider preferences that are recursive but not necessarily monotone.
The latter article has provided a widespread alternative to the standard model of
intertemporal choice.

The current paper explores if and how flexibility can be obtained within the
set of monotone recursive preferences. The core of the analysis is developed in
the risk setting, where preferences are defined over temporal lotteries.1 Our main
finding is that recursive preferences are monotone if and only if they admit a
recursive utility representation Ut = W (ct, I[Ut+1]) with a time aggregator W and

1Section A of the Appendix extends the analysis to a setting of subjective uncertainty.
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a certainty equivalent I belonging to one of the following two cases:2

– W (c, x) = u(c) + βx and I is translation-invariant, or

– W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant.

Our results contribute to a growing literature that seeks to understand how al-
ternative models of intertemporal choice differ in their predictions. Notably, the
specifications we derive constrain both ordinal preferences and risk preferences.3

Regarding ordinal preferences, Koopmans (1960), whose analysis was restricted to
a deterministic setting, showed that any monotone time aggregator W generates a
stationary preference relation. Here, we obtain that only ordinal preferences that
can be represented by affine time aggregators can be extended to monotone recur-
sive preferences once risk is introduced. Moreover, the restrictions related to the
certainty equivalent I drastically reduce the set of admissible risk preferences. A
direct consequence of our results is that the specifications suggested by the general
recursive approach of Epstein and Zin (1989) are monotone only in some specific
cases, which are detailed in Section 4.3. In particular, the most widely used isoelas-
tic specification of Epstein and Zin (1989) and Weil (1990) is not monotone, unless
it reduces to the standard additively separable model of intertemporal choice or
the elasticity of intertemporal substitution is assumed to be equal to one.

As a corollary of our main result, we obtain novel characterizations of two
models that have featured prominently in applied work. We do so by restricting
attention to preferences à la Kreps and Porteus (1978), that is, to recursive pref-
erences which admit a certainty equivalent of the expected utility form. We find
that such preferences are monotone if and only if they admit one of the following
two recursive representations:

– Ut = u(ct)− β 1
k

log(E[e−kUt+1 ]), or

– Ut = u(ct) + b(ct)E[Ut+1].

The first case corresponds to the risk-sensitive preferences of Hansen and Sargent
(1995), while the second case corresponds to Uzawa-Epstein preferences, which
were first introduced by Uzawa (1968) in a deterministic setting and then ex-
tended to an uncertain setting by Epstein (1983). Uzawa-Epstein preferences are
completely determined by their restriction to deterministic consumption paths. In

2From the perspective of period t, the continuation utility Ut+1 may be random. A certainty
equivalent I provides a general way of computing the “expected value” of Ut+1. This expected
value is then combined with current consumption ct via the time aggregator W in order to
compute Ut. Formal definitions are given in Section 4.1.

3We use the terms “ordinal preferences” to refer to preferences over deterministic consumption
paths.
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particular, the degree of risk aversion cannot be modified without affecting ordi-
nal preferences and the elasticity of intertemporal substitution. In contrast, it is
known from Chew and Epstein (1991) that the parameter k that enters the re-
cursion defining risk-sensitive preferences leaves ordinal preferences unaffected and
has a direct interpretation in terms of risk aversion: the greater the value of k, the
greater the risk aversion. We thus reach the conclusion that risk-sensitive prefer-
ences are the only Kreps-Porteus recursive preferences that admit a separation of
risk and intertemporal attitudes, while being monotone.

The proof of our main result employs techniques that may be of interest
outside the scope of this paper. Namely, we show that combining stationar-
ity, recursivity and monotonicity is only possible if the utility function satisfies
a system of generalized distributivity equations, that is, equations of the form
f(x, g(y, z)) = h(f(x, y), f(x, z)). Such equations were studied by Aczél (1966)
and solved in great generality by Lundberg (1982, 1985) with methods imported
from group theory (see Appendix B.1). Our proof offers an introduction to these
methods and shows how they can be applied to the study of recursive utility.

The remainder of the paper is organized as follows. Section 2 introduces our
choice setting and Section 3 our axioms. Section 4 presents our main represen-
tation result and its corollaries. Section 5 develops some intuition for our main
result. In Section 6, we use a consumption-savings example to contrast the con-
sequences of using monotone and non-monotone preferences. Section 7 concludes.
The appendix contains an extension to a setting of subjective uncertainty and the
proof of our main result.

2 Choice setting

Time is discrete and indexed by t = 0, 1, . . . For the sake of simplicity, we as-
sume that per period consumption lies in a compact interval C = [c, c] ⊂ R where
0 < c < c. The infinite Cartesian product C∞ represents the space of determin-
istic consumption streams. To introduce uncertainty, we follow Epstein and Zin
(1989) and construct a space of infinite temporal lotteries. We should note that
our account of the construction is brief and at times heuristic; the reader is referred
to Epstein and Zin (1989) and Chew and Epstein (1991) for the formal details.
To proceed, we need a few mathematical preliminaries. The Cartesian product
of topological spaces is endowed with the product topology. Given a topological
space X, the Borel σ-algebra on X is denoted B(X). The space of Borel proba-
bility measures on X is denoted M(X) and endowed with the topology of weak
convergence. As is typical, we identify each x ∈ X with the Dirac measure on x.
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When convenient, we can therefore view X as a subset of M(X).
The space D of temporal lotteries is defined in two steps. First, let D0 :=

C∞ and for all t ≥ 1, let Dt := C × M(Dt−1). For each t, Dt is the set of
temporal lotteries for which all uncertainty resolves in or before period t. The
second step is to define temporal lotteries for which the uncertainty may resolve
only asymptotically. Intuitively, one can visualize such lotteries as potentially
infinite probability trees, each branch of which is a consumption stream in C∞.
The formal construction uses the notion of an inverse limit of Parthasarathy (1967).
As detailed in Epstein and Zin (1989, pp. 942-943) and Chew and Epstein (1991,
p. 355), any element m of D can be defined as a sequence (m1,m2, . . .) ∈

∏∞
t=1Dt

where the elements mt differ only in the timing of resolution of uncertainty.4 Such
a sequence delivers increasingly finer approximations for the temporal lottery m.
As a subset of

∏∞
t=1Dt, the set D inherits the relative product topology.

It is known from Epstein and Zin (1989) that the set D is homeomorphic to
C × M(D). Subsequently, we write (c,m) for a generic temporal lottery in D.
There is a clear intuition for this homeomorphism: Each temporal lottery can be
decomposed into a pair (c,m) where c ∈ C represents initial consumption, which
is certain, and m ∈M(D) represents uncertainty about the future, that is, about
the temporal lottery to be faced next period. Since we identify D with a subset
of M(D), we can also write (c0, (c1,m)) ∈ D for a temporal lottery that consists
of two periods of deterministic consumption, c0 and c1, followed by the lottery
m ∈ M(D). More generally, for any consumption vector ct = (c0, . . . , ct−1) ∈ Ct

and m ∈ M(D), the temporal lottery (c0, (c1, (c2, (. . . , (ct−1,m))) . . .) ∈ D is one
that consists of t periods of deterministic consumption followed by the lottery m.
For simplicity, we shorten the last expression by writing (ct,m) ∈ D for such a
lottery.

Being a space of probability measures, M(D) is a mixture space. We write
πm⊕ (1− π)m′ ∈ M(D) for the mixture of m,m′ ∈ M(D) given π ∈ [0, 1].5 The
mixture of n lotteries (mi)1≤i≤n with a probability vector (πi)1≤i≤n will be denoted⊕n

i=1 πimi.

4More precisely, for any t, the temporal lottery mt ∈ Dt has to be obtained from the lottery
mt+1 ∈ Dt+1, by translating the resolution of uncertainty that takes place in period t+1 to
period t.

5In particular, πm ⊕ (1 − π)m′ is the probability measure in M(D) such that [πm ⊕ (1 −
π)m′](B) = πm(B) + (1− π)m′(B) for every Borel subset B of D.
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3 Axioms

The behavioral primitive in this paper is a binary relation � on the space D of
temporal lotteries. In this section, we introduce the main axioms we impose on
this relation. The first two are standard.

Axiom 1 (Weak order) The binary relation � is complete and transitive.

Axiom 2 (Continuity) For all (c,m) ∈ D, the sets {(ĉ, m̂) ∈ D|(ĉ, m̂) � (c,m)}
and {(ĉ, m̂) ∈ D|(c,m) � (ĉ, m̂)} are closed in D.

The next axiom, Recursivity, which ensures that ex-ante choices remain optimal
when they are evaluated ex-post, is taken from Chew and Epstein (1990).

Axiom 3 (Recursivity) For all n, t > 0, consumption vectors ct ∈ Ct, temporal
lotteries (ci,mi), (ĉi, m̂i) ∈ D, i = 1, 2, . . . , n, and (π1, . . . , πn) ∈ (0, 1)n such that∑

i πi = 1, if for every i = 1, . . . , n:(
ct, (ci,mi)

)
�
(
ct, (ĉi, m̂i)

)
, (1)

then (
ct,

n⊕
i=1

πi(ci,mi)
)
�
(
ct,

n⊕
i=1

πi(ĉi, m̂i)
)
. (2)

The latter ranking is strict if, in addition, one of the former rankings is strict.

The next two axioms, History Independence and Stationarity, are complemen-
tary assumptions expressing Koopmans’ (1960, p. 294) idea that “the passage of
time does not have an effect on preferences.”

Axiom 4 (History Independence) For all c, ĉ ∈ C andm, m̂ ∈M(D), (c,m) �
(c, m̂) if and only if (ĉ, m) � (ĉ, m̂).

Axiom 5 (Stationarity) For all c0 ∈ C and (c,m), (ĉ, m̂) ∈ D,

(c0, (c,m)) � (c0, (ĉ, m̂)) if and only if (c,m) � (ĉ, m̂).

Following Chew and Epstein (1991), we refer to preferences satisfying Axioms
1 through 5 as recursive preferences.6

6Unlike us, Chew and Epstein (1991) adopt M(D) as the domain of choice for their work on
recursive preferences. The difference is immaterial since any recursive preference relation on D
extends uniquely to a recursive preference relation on M(D). We should note however that if we
had chosen M(D) as the domain of choice, then History Independence and Stationarity could
have been combined into a single assumption stating that for all m, m̂ ∈ M(D) and all c ∈ C,
m � m̂ if and only if (c,m) � (c, m̂). It is for this reason that we often use the term “stationarity”
to mean the conjunction of Axioms 4 and 5.
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The next axiom requires that in the absence of uncertainty higher consumption
is always better. To state it, let ≥ denote the usual pointwise order on C∞.

Axiom 6 (Monotonicity for deterministic prospects) For all c∞, ĉ∞ ∈ C∞,
if c∞ ≥ ĉ∞, then c∞ � ĉ∞. The latter ranking is strict whenever c∞ 
 ĉ∞.

The next and final axiom is central to the analysis of this paper.

Axiom 7 (Monotonicity) For all n, t > 0, consumption vectors ct, ĉt ∈ Ct,
consumption streams c∞i , ĉ∞i ∈ C∞, i = 1, 2, . . . , n, and (π1, . . . , πn) ∈ [0, 1]n such
that

∑
i πi = 1, if for every i = 1, . . . , n:(

ct, c∞i
)
�
(
ĉt, ĉ∞i

)
, (3)

then (
ct,

n⊕
i=1

πic
∞
i

)
�
(
ĉt,

n⊕
i=1

πiĉ
∞
i

)
. (4)

Monotonicity corresponds to the notion of Ordinal Dominance in Chew and
Epstein (1990). It is noteworthy that if the consumption levels during the first t
periods are identical, that is, if ct = ĉt, then the requirement in equation (4) is
implied by Recursivity. Monotonicity extends the requirement to the case when
ct 6= ĉt. Another important observation about Monotonicity is that, as in the
statement of Recursivity, the consumption streams (ct, c∞i ) and (ĉt, ĉ∞i ) are mixed
at the same date t on both sides of equation (4). This explains why this notion
of monotonicity allows for non-trivial attitudes toward the timing of resolution of
uncertainty, which is necessary to achieve a separation of risk and intertemporal
attitudes. See Section 4.4 for a detailed discussion of this point.

Monotonicity is a consistency requirement between preferences over tempo-
ral lotteries and preferences over deterministic consumption streams. Axiom 7
stipulates that a temporal lottery be preferred whenever it provides a better con-
sumption stream in every state of the world. Monotonicity is satisfied by the
standard additively separable model of intertemporal choice and more generally
by the recursive preferences axiomatized in Epstein (1983), as a direct consequence
of the von-Neumann Morgenstern independence axiom. In a setting of subjective
uncertainty, the axiom is found in Epstein and Schneider (2003b), Maccheroni,
Marinacci, and Rustichini (2006), and Kochov (2015). It is noteworthy that in
those papers a stronger version of the axiom is actually used. See Axiom A.7 in
Appendix A and the discussion therein. By comparison, the models introduced in
the seminal papers of Kreps and Porteus (1978) and Selden (1978) are typically
non-monotone, an aspect which is not discussed in these papers.
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We should stress that Monotonicity, as well as Recursivity, implies indiffer-
ence to some forms of uncertainty, reflecting the underlying separability properties
implied by these assumptions. Consider for example the case of two different con-
sumption streams (c, c∞1 ) and (c, c∞2 ), such that (c, c∞1 ) ∼ (c, c∞2 ). Note that these
consumption streams start with the same first period consumption c. If Mono-
tonicity or Recursivity (or both) holds, we have (c, πc∞1 ⊕ (1 − π)c∞2 ) ∼ (c, c∞1 )

for every π ∈ (0, 1). Thus, there is indifference between a risky temporal lot-
tery and a degenerate lottery, whatever the agent’s degree of risk aversion. This
may of course be seen as disputable: one may argue that an agent who strongly
dislikes risk should strictly prefer the deterministic consumption stream (c, c∞1 )

to the temporal lottery (c, πc∞1 ⊕ (1 − π)c∞2 ), which allows for future per period
consumption levels to be uncertain. Aversion to such risk is however ruled out
whenever Monotonicity or Recursivity is assumed. A similar feature also appears
when Monotonicity is used in a static setting with a set of outcomes that is not
totally ordered (meaning that indifference between different outcomes is possible).
For example, consider applying the expected utility theory of von Neumann and
Morgenstern to a setup where outcomes are multidimensional consumption bun-
dles. Then, the degree of concavity of the utility index does not reflect aversion
to inequalities in the actual outcomes, but aversion to inequalities in the welfare
levels associated with those outcomes. More generally, Monotonicity implies that
substituting a possible outcome of a lottery with another outcome which is consid-
ered equally good leaves the evaluation of the lottery unaffected. But, as soon as
the set of outcomes is not totally ordered, this requirement embeds a non-trivial
separability property.7 Our axiom makes no exception in this respect.

As with any separability assumption, one may wonder whether Monotonicity
is appealing or excessively restrictive. Our aim is not to take a position on this
point but to explore the flexibility that remains when Monotonicity is introduced.
The current paper contributes to the literature by fully characterizing the class of
monotone recursive preferences. We should also mention that there has been little
discussion of the implications of Monotonicity within the type of specific intertem-
poral decision problems that arise in applications. This is in spite of the fact,
which is made clear by our results, that Monotonicity is a key difference between
some of the main utility specifications used in practice. For example, the problem
of saving under uncertainty has been addressed with monotone specifications in
Drèze and Modigliani (1972) and Kimball (1990), and with non-monotone pref-

7This is also the case when Monotonicity is formulated in a setting of subjective uncertainty,
à la Savage, with a set of consequences that is not totally ordered. A particular example is the
setting of Anscombe and Aumann (1963), in which the set of consequences is that of roulette
lotteries.
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erences in Kimball and Weil (2009), but there is no discussion on the potential
impact of monotonicity breakdowns. Section 6 provides insights into the role of
Monotonicity in a standard consumption-savings problem. The discussion illus-
trates that the restrictions imposed by Monotonicity come with the advantage of
providing unambiguous and intuitive conclusions about the role of risk aversion.

The formal statements of Recursivity and Monotonicity exhibit some similar-
ities. Actually both axioms could be combined into a single axiom, looking like
Axiom 3, except that the initial t periods of consumption would not be required
to be the same on the left and right hand sides of equations (1) and (2). To be
precise, we would need to state that if (ct, (ci,mi))�(ĉt, (ĉi, m̂i)) for all i, then one
should have

(
ct,
⊕n

i=1 πi(ci,mi)
)
�
(
ĉt,
⊕n

i=1 πi(ĉi, m̂i)
)
. Recursivity only assumes

that the implication has to hold when the consumption levels during the first t
periods are identical, that is, when ct = ĉt. Monotonicity relaxes this restriction,
but constrains the (ci,mi) and (ĉi, m̂i) to be deterministic consumption paths, so
that the ranking in (3) relates to ordinal preferences only. Although merging Re-
cursivity and Monotonicity into a single axiom would condense the presentation
of our results, we preferred to state them separately, as they refer to conceptually
different behavioral restrictions. Recursivity, on the one hand, guarantees that the
preference relation leads to time-consistent behavior. The restriction that ct = ĉt

is natural in that perspective, since for an agent at time t, the past is reflected in
ct and a choice between two different past consumption streams is obviously not
available. Monotonicity, on the other hand, is a consistency requirement between
ordinal and risk preferences. Monotonicity has to be thought of as constraining
the behavior of an agent in period 0, when she has to choose between different
possible temporal lotteries. The lotteries to be compared can provide different
consumption levels during the first t periods and there is no reason to introduce
the restriction ct = ĉt in the formulation of Monotonicity.

Finally, note that, as formulated in Axiom 7, Monotonicity is restricted to
temporal lotteries that resolve in a single period of time. Bommier and LeGrand
(2014) show that a stronger notion of monotonicity can be formulated, extending
the consistency requirement to lotteries that resolve sequentially over many peri-
ods. This stronger notion builds on the work of Segal (1990), who provides such
an extension for lotteries that resolve in two periods of time. We decided not to
pursue this direction here since the extension is quite involved and since our main
results can be obtained using only the weaker axiom. We should stress however
that every preference relation that satisfies Axioms 1 through 7 is monotone in the
stronger sense of Bommier and LeGrand (2014).
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In the remainder of the paper, we refer to preferences satisfying Axioms 1
through 7 as monotone recursive preferences.

4 Representation results

4.1 Monotone recursive preferences

Our main representation result uses the notion of a certainty equivalent. Formally,
a certainty equivalent I is a mapping from M(R+) into R+ which is continuous,
increasing with respect to first-order stochastic dominance, and such that I(x) = x

for every x ∈ R+.8 Informally, one can think of I as specifying an ‘expected value’
to each probability distribution over the reals.

Two additional properties of certainty equivalents play a major role in the
subsequent analysis. For every x ∈ R+ and µ ∈M(R+), let µ+x be the probability
measure in M(R+) such that [µ + x](B + x) = µ(B) for every set B ∈ B(R+).
Similarly, for every λ ∈ R+ and µ ∈ M(R+), let λµ be the probability measure
such that [λµ](λB) = µ(B) for every B ∈ B(R+).9 In words, µ+x is obtained from
µ by adding x to each y in µ’s support, while λµ is obtained from µ by scaling
each y in µ’s support by λ. A certainty equivalent I is translation-invariant if
I(x + µ) = x + I(µ) for all x ∈ R+ and µ ∈ M(R+). It is scale-invariant if
I(λµ) = λI(µ) for all λ ∈ R+ and µ ∈ M(R+). Translation invariance has
an obvious analogue in the notion of constant absolute risk aversion, while scale
invariance is related to the notion of constant relative risk aversion. In what
follows, however, certainty equivalents are applied to distributions of utility levels
rather than consumption levels. Thus, the two invariance properties have no direct
implications in terms of risk attitudes with respect to consumption.

We proceed by recalling an important result from Chew and Epstein (1991).
It delivers a representation for the class of all recursive, but non-necessarily mono-
tone, preferences. Given a function U : D → [0, 1] and a probability measure
m ∈M(D), define the image measure m ◦ U−1 ∈M([0, 1]) by letting:

[m ◦ U−1](B) := m ({(ĉ, m̂) ∈ D|U(ĉ, m̂) ∈ B}) , ∀B ∈ B([0, 1]). (5)

It is known from Theorem 3.1 of Chew and Epstein (1991) that:

Lemma 1 (recursive preferences) A binary relation � on D satisfies Axioms
1 through 5 if and only if it can be represented by a continuous utility function

8Recall that we abuse notation and identify a degenerate probability distribution on x with
x itself.

9As is standard, B+x denotes the set {y+x : y ∈ B}, and λB denotes the set {λy : y ∈ B}.
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U : D → [0, 1] such that for all (c,m) ∈ D,

U(c,m) = W (c, I(m ◦ U−1)), (6)

where I : M(R+) → R+ is a certainty equivalent and W : C × [0, 1] → [0, 1] is a
continuous function, strictly increasing in its second argument.

We call the representation in (6), which we denote as (U,W, I), a recursive
representation for �. The functionW is called a time aggregator and I a certainty
equivalent. Faced with a temporal lottery (c,m), the individual first evaluates the
uncertain future by assigning the value I(m ◦ U−1) to the distribution m ◦ U−1 of
continuation utilities; this value is then combined with current consumption c via
W , so as to compute the overall utility of the lottery (c,m).

We are ready to state the main result of our paper.

Proposition 1 (monotone recursive preferences) A binary relation � on D
fulfills Axioms 1 to 7 if and only if it admits a recursive representation (U,W, I)

such that either:

1. W (c, x) = u(c) + βx and I is translation-invariant, where β ∈ (0, 1) and
u : C → [0, 1] is a continuous, strictly increasing function such that u(c) = 0

and u(c) = 1− β, or

2. W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant, where u, b :

C → [0, 1] are continuous functions such that b(C) ⊂ (0, 1), the functions u
and u+ b are strictly increasing, and u(c) = 0, u(c) = 1− b(c).

The formal proof of Proposition 1 is given in Appendix B. Some intuition
is provided in Section 5. One the main lessons of our result is that Monotonicity
greatly restricts the admissible specifications of intertemporal utility functions and
is thus a powerful criterion to consider. Indeed, the work of Chew and Epstein
(1991) facilitated the construction of recursive intertemporal utility functions by
allowing one to select a certainty equivalent I from the large literature on atempo-
ral non-expected utility preferences and integrating it into an intertemporal utility
function via the recursion in (6). However, the question arose as to which specifi-
cations of the certainty equivalent I, and of the time aggregatorW should be used,
and what their implications for intertemporal behavior would be. The literature on
this matter is active and growing. In their comments to Backus, Routledge and Zin
(2005), a paper that surveys the literature on recursive utility, both Hansen and
Werning focus on this problem, with Werning in particular emphasizing the need
for more work aimed at discriminating among alternative utility specifications.
Proposition 1 offers a partial answer to this question.
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4.2 Kreps-Porteus recursive preferences

This section focuses on the case when the recursivity axiom is replaced by the
stronger independence axiom of Kreps and Porteus (1978) provided below.

Axiom 3∗ (Independence) For all n, t > 0, consumption vectors ct ∈ Ct, tem-
poral lotteries mi, m̂i ∈ D, i = 1, 2, . . . , n, and (π1, . . . , πn) ∈ (0, 1)n such that∑

i πi = 1, if for every i = 1, . . . , n:

(ct,mi) � (ct, m̂i), (7)

then (
ct,

n⊕
i=1

πimi) � (ct,
n⊕
i=1

πim̂i). (8)

The latter ranking is strict if, in addition, one of the former rankings is strict.

Independence is stronger than Recursivity, since Axiom 3 is obtained from Ax-
iom 3∗ by restricting the lotteries mi, m̂i ∈M(D) in (7) and (8) to be degenerate,
that is, to be elements of D. Axiom 3∗, together with Axioms 1, 2, 4 and 5,
imply that every recursive representation (U,W, I) of � is such that the certainty
equivalent is of the expected utility kind: I = φ−1E φ, where E is the standard
expectation operator and φ an increasing and continuous function.10 Combined
with Proposition 1, we obtain the following result.

Proposition 2 (monotone Kreps-Porteus recursive preferences) A prefer-
ence relation � fulfills Axioms 1, 2, 3∗, 4, 5, 6 and 7 if and only if it admits a
representation (U,W, I) such that either:

1. Risk-sensitive case: W (c, x) = u(c) + βx and I = φ−1E φ where φ(x) =
1−exp(−kx)

k
, k ∈ R \ {0} or φ(x) = x, β ∈ (0, 1) and u : C → [0, 1] is a

continuous, strictly increasing function such that u(c) = 0 and u(c) = 1− β,
or

2. Uzawa-Epstein case: W (c, x) = u(c) + b(c)x and I = E, where u, b : C →
[0, 1] are continuous functions such that b(C) ⊂ (0, 1), the functions u and
u+ b are strictly increasing, and u(c) = 0, u(c) = 1− b(c).

Proof. We know that every recursive representation (U,W, I) of � is such that
I = φ−1E φ, for some increasing and continuous function φ. Proposition 1 implies
two cases. In the first one, the certainty equivalent I is translation-invariant,

10For any µ ∈M(R+), we define E[µ] =
´
R+ xµ(dx). More generally for any strictly increasing

function φ, we define φ−1E φ as: for any µ ∈M(R+),
(
φ−1E φ

)
[µ] = φ−1

(´
R+ φ(x)µ(dx)

)
.
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implying that φ is of the constant absolute risk aversion kind (that is, φ exponential
or linear). In the second case, I must be scale- and translation-invariant. The
function φ must then be linear, which implies the Uzawa-Epstein case.

Proposition 2 shows that Uzawa-Epstein preferences and the risk-sensitive pref-
erences of Hansen and Sargent (1995) are the only Kreps-Porteus recursive pref-
erences that are monotone. It is important to observe that among the two cases
obtained in Proposition 2, only the first affords a separation of risk and intertem-
poral attitudes. In the risk-sensitive case, one can vary the parameter k so as to
change risk preferences, without affecting preferences over deterministic prospects
and in particular the elasticity of intertemporal substitution. By comparison,
Uzawa-Epstein preferences are fully determined by their restriction to C∞ and are
therefore not flexible enough to explore the role of risk aversion.

4.3 Epstein-Zin-Weil preferences

A very popular class of preferences that affords a separation of risk and intertem-
poral attitudes was introduced in Epstein and Zin (1989). While this seminal
paper adopts the general recursive representation shown in Lemma 1 as a starting
point, Epstein and Zin (1989) focus their analysis on recursive preferences with a
representation (UEZ ,WEZ , IEZ) such that the time aggregator is isoelastic:11

WEZ(c, y) =

((1− β)cρ + βyρ)
1
ρ , if 0 6= ρ < 1,

exp ((1− β) log(c) + β log(y)) , if ρ = 0,

and the certainty equivalent IEZ is scale-invariant. The combination of isoelastic
time aggregators and scale-invariant certainty equivalents implies that preferences
are homothetic, which is of course extremely convenient in applications.12 Building
on Proposition 1, we can now characterize when such preferences are monotone.

To do so, note that a recursive representation (UEZ ,WEZ , IEZ) is equivalent
to a representation (Û , Ŵ , Î) such that Û = f(UEZ), Ŵ (c, y) = f(WEZ(c, f−1(y))

and Î = fIEZf−1, where f is a strictly increasing function. Using f(x) = xρ

ρ
in

the case when ρ 6= 0 and f(x) = log(x) in the case ρ = 0, we obtain that the
11The case where ρ = 0 is not explicitly written in Epstein and Zin (1989), but is obtained

from the general case by taking the limit ρ→ 0.
12Preference homotheticity means that the ranking of two temporal lotteries is unaffected if

multiplying all consumption levels by a positive scalar. In consumption-savings applications, this
implies that the agent’s wealth is just a simple scaling factor, which does not impact the agent’s
propensity to save and portfolio composition.
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Epstein-Zin approach is equivalent to assuming:Ŵ (c, y) = (1− β) c
ρ

ρ
+ βy and Î(µ) = 1

ρ

(
IEZ

(
(ρµ)

1
ρ

))ρ
, if 0 6= ρ < 1,

Ŵ (c, y) = (1− β) log(c) + βy and Î(µ) = log(IEZ(exp(µ))), if ρ = 0.

When ρ = 0, implying an elasticity of intertemporal substitution equal to one,
the scale invariance of IEZ implies the translation invariance of Î, which, by
Proposition 1, means that Epstein-Zin preferences are monotone. However, when
ρ 6= 0, Monotonicity is only obtained when the certainty equivalent IEZ satisfies
IEZ(µ) = (I(µρ))

1
ρ for some scale- and translation-invariant I.13 We can for ex-

ample consider a certainty equivalent I based on the dual model of Yaari (1987).14

The most popular specification of Epstein and Zin (1989) is actually obtained
when IEZ is of the expected utility form, IEZ = φ−1Eφ, with φ given by:

φ(x) =

 1
α
xα, if 0 6= α < 1,

log(x), if α = 0.

This also corresponds to the specification of Weil (1990), providing the so-called
Epstein-Zin-Weil preferences. As mentioned above, Monotonicity is granted when
ρ = 0, that is when the elasticity of intertemporal substitution equals one. When
ρ 6= 0, Monotonicity is only obtained if µ 7→ (E(µ

α
ρ ))

ρ
α is translation-invariant, im-

plying α = ρ. This corresponds to the standard additive expected utility model.15

In all cases where ρ 6= 0 and α 6= ρ, Epstein-Zin-Weil preferences are not monotone.
We illustrate in Section 6 the implications of such a departure from Monotonicity.

4.4 Attitudes toward the timing of resolution of uncertainty

As emphasized in Kreps and Porteus (1978), recursive preferences may exhibit
nontrivial attitudes toward the timing of resolution of uncertainty. In this section,
we explain what a preference for early (or late) resolution of uncertainty implies
for the representations of monotone recursive preferences we have derived. The
analysis will also clarify the behavioral implications of having a scale-invariant
certainty equivalent I, which is the main difference between the two cases obtained
in Proposition 1.

13For every ρ 6= 0 and µ ∈ M(R+), µρ is the probability measure in M(R+) such that
[µρ](Bρ) = µ(B) for every set B ∈ B(R+), where Bρ denotes the set {yρ : y ∈ B}.

14This is equivalent to using the rank-dependent approach suggested by Epstein and Zin (1990),
with the constraint that the parameters ρ and α they introduce in their paper have to be equal.

15The monotonicity of Epstein-Zin-Weil preferences when ρ = 0 or when ρ = α does not
contradict Proposition 2, since in these cases Epstein-Zin-Weil preferences are also risk-sensitive
preferences.
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In order to relate our paper to previous contributions discussing attitudes to-
ward the timing of uncertainty, Chew and Epstein (1991) and Strzalecki (2013) in
particular, we consider two notions of preference for early resolution of uncertainty.
The first notion is directly taken from Chew and Epstein (1991).

Definition 1 A binary relation � on D exhibits a preference for early resolution
of uncertainty if for all n > 0, c0, c1 ∈ C, (mi) ∈ (M(D))n, and (πi) ∈ [0, 1]n such
that

∑n
i=1 πi = 1 we have:

A := (c0,
n⊕
i=1

πi(c1,mi)) � (c0, c1,
n⊕
i=1

πimi) =: B. (9)

If the above ranking is one of indifference, then � exhibits indifference toward the
timing of the resolution of uncertainty.16

The second notion obtains by restricting the lotteries mi ∈M(D) in the above
definition to be degenerate, that is, elements of D. Namely:

Definition 2 A binary relation � on D exhibits a restricted preference for early
resolution of uncertainty if for all n > 0, c0, c1 ∈ C, (c2i,mi) ∈ D, and (πi) ∈ [0, 1]n

such that
∑n

i=1 πi = 1 we have:

A := (c0,
n⊕
i=1

πi(c1, c2i,mi)) � (c0, c1,
n⊕
i=1

πi(c2i,mi)) =: B. (10)

If the above ranking is one of indifference, then � exhibits restricted indifference
toward the timing of the resolution of uncertainty.

This second definition is similar to that of Strzalecki (2013).17 By construction,
Definition 2 is weaker than Definition 1, which is emphasized by the adjective
“restricted” that appears in Definition 2. In Definition 1, preference for early res-
olution of uncertainty means that the agent prefers when some uncertainty (but
not necessarily all uncertainty) resolved in period 2 (in lottery B) is resolved in
period 1 (in lottery A). In Definition 2, (restricted) preference for early resolution
of uncertainty means that the agent prefers when all uncertainty resolved in pe-
riod 2 (in lottery B) is resolved in period 1 (in lottery A). As stated in the next
proposition, these two definitions yield different characterizations.

16Preference for late resolution of uncertainty is defined similarly, by reverting the ranking in
(9), that is, by requiring that B � A. The remark also applies to Definition 2 below.

17The definition of Strzalecki (2013) is written in a setting of subjective uncertainty. The
parallel of Strzalecki’s definition would be obtained when constraining the mi that appear in
equation (10) to be risk free (i.e., elements of C∞). However, with Recursivity, this would be
equivalent to our definition.
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Proposition 3 Consider a monotone recursive preference relation � with a rep-
resentation (U,W, I) as in Proposition 1. Then:

– � exhibits indifference toward the timing of resolution of uncertainty if and
only if I = E;

– � exhibits restricted preference for early (resp. late) resolution of uncertainty
resolution if and only if:

◦ either, � can be represented as in the first case of Proposition 1, with
a certainty equivalent that in addition fulfills I(βµ) ≥ βI(µ) (resp.
I(βµ) ≤ βI(µ)) for all µ ∈M([0, 1]).

◦ or, � can be represented as in the second case of Proposition 1.

– if � is a Kreps-Porteus preference relation, restricted preference for early
(resp. late) resolution of uncertainty is equivalent to unrestricted preference
for early (resp. late) resolution of uncertainty, and also equivalent to having
k ≥ 0 (resp. k ≤ 0) in the representation of risk-sensitive preferences given
in Proposition 2.

The proof is relegated to Section C of the appendix. The first part of Proposi-
tion 3, which is due to Chew and Epstein (1991), shows that a separation of risk and
intertemporal attitudes is possible only if the temporal resolution of uncertainty
matters.18 The significance of this point, which we discuss further in Section 7, has
been recently emphasized by Epstein, Farhi, and Strzalecki (2014). The second
part of Proposition 3 parallels Lemma 1 of Strzalecki (2013). It implies that scale-
invariant certainty equivalents generate restricted indifference toward the timing of
resolution of uncertainty. Thus, by choosing a scale-invariant certainty equivalent
that is not of the expected utility form, it is possible to have a separation between
risk and intertemporal attitudes while maintaining a restricted indifference toward
the timing of resolution of uncertainty. A simple example is obtained by using
certainty equivalents I based on the dual approach of Yaari (1987). The final part
of Proposition 3 shows that this latter possibility however disappears if we further
assume the independence axiom of Section 4.2.

18The result in Chew and Epstein (1991) is in fact stronger: it shows that Uzawa-Epstein
preferences are the only recursive preferences that exhibit indifference toward the timing of
resolution of uncertainty. In particular, recursive preferences that exhibit indifference to the
timing of resolution of uncertainty are necessarily monotone.
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5 Intuition behind Proposition 1

This section provides insights behind our main result, Proposition 1. Maintaining
Recursivity throughout, we focus on the distinct roles played by Monotonicity and
Stationarity, with Stationarity taken in a broad sense that includes History Inde-
pendence. While Stationarity (without Monotonicity) is known to imply the re-
cursive representation shown in Lemma 1, we explain in Section 5.1 that assuming
Monotonicity (without Stationarity) leads to a different type of recursive represen-
tation. Section 5.2 shows that combining these two recursive representations leads
to a system of generalized distributivity equations, which is the starting point of
the formal proof provided in Appendix B. Finally, in Section 5.3, we provide in-
sights about the restrictions on risk preferences that arise when Monotonicity and
Stationarity are combined.

5.1 Implications of Monotonicity

Consider a continuous preference relation � on D that fulfills Monotonicity. The
relation � induces a preference relation on C∞, which can be represented by a
continuous function V : C∞ → Im(V ) ⊂ R.

For the sake of simplicity, we now focus on simple temporal lotteries whose
uncertainty resolves in a single period t ≥ 1. These are lotteries of the form:

(ct,
⊕
i

πic
∞
i ), (11)

for some ct ∈ Ct, c∞i ∈ C∞ and probabilities πi ∈ [0, 1] that sum to 1. A tem-
poral lottery as in (11) can be associated with a lottery over lifetime utilities⊕

i πiV (ct, c∞i ) ∈ M f (Im(V )), where M f (Im(V )) is the set of finite-support lot-
teries with outcomes in Im(V ). Moreover, because of Monotonicity, if two tem-
poral lotteries as in (11) induce the same lottery in M f (Im(V )), they have to be
indifferent. Thus, the preference relation � on D induces a preference relation
�t on M f (Im(V )).19 Let It : M f (Im(V )) → Im(V ) be a continuous function
representing �t such that It(x) = x for all x ∈ Im(V ). Monotonicity requires
It to be increasing with respect to first-order stochastic dominance, which, in our
terminology, means that It is a certainty equivalent. By construction, the function:

(ct,
⊕
i

πic
∞
i ) 7→ It(

⊕
i

πiV (ct, c∞i )) (12)

19To be fully precise, for domain reasons, the preference relation � generates a preference
relation �t on a subset of Mf (Im(V )). This preference relation �t can however be extended to
the whole domain Mf (Im(V )). The formal proof of Proposition 1 addresses these technicalities.
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affords a utility representation for the set of simple temporal lotteries that resolve
in period t. Using Recursivity, we can extend this representation of preferences
to the set of simple temporal lotteries. Indeed, a temporal lottery that resolves
within the first T periods of time can be evaluated using the end point V0 of the
following backward recursion:Vt = V (c0, c1, . . .) for t = T,

Vt = It+1([Vt+1]) for all t < T .
(13)

In words, a temporal lottery can be associated with a compound lottery over
lifetime utilities, which is then evaluated recursively as in Segal (1990), using a
sequence I1, I2, . . . of certainty equivalents. Note that the certainty equivalents It
may depend on the date t. Such a dependence would generate non-trivial attitudes
toward the timing of uncertainty (in both the restricted and unrestricted sense).

Note that the above recursion does not imply what Kreps and Porteus (1978)
call the standard “pay-off vector approach” for evaluating temporal lotteries. The
latter approach consists in first computing a compound lottery over lifetime utility,
and then evaluating this lottery using the reduction of compound lottery axiom.
The recursion in (13) requires one to preserve the first step of the pay-off vector
approach, but not the latter, since the compound lottery over lifetime utility is
evaluated recursively without reducing it to a one-stage lottery.

5.2 A system of generalized distributivity equations

Assume now that the preference relation � fulfills both Monotonicity and Station-
arity. From Monotonicity, we know that there exists a utility representation as in
(13), while from Stationarity, we know that the preference relation also admits a
recursive representation (U,W, I) as in Lemma 1. It turns out that the co-existence
of the two representations is only possible in a few specific cases. To show this, we
choose the lifetime utility V used for representation (13) to be the restriction of
U to C∞, which implies that U = V0.

20 Applying representation (13) to lotteries
that resolve in period 1, we obtain:

W (c1, I(
⊕
i

πiU(c∞i ))) = I1(
⊕
i

πiW (c1, U(c∞i ))), (14)

20Since U and V0 represent the same preference relation on D and are identical on C∞ they
have to be identical.
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and for lotteries that resolve in period 2:

W (c0,W (c1, I(
⊕
i

πiU(c∞i )))) = I2(
⊕
i

πiW (c0,W (c1, U(c∞i )))). (15)

Hence, substituting (14) into (15) and setting yi = W (c1, U(c∞i )) yield:

W (c0, I1(
⊕
i

πiyi)) = I2(
⊕
i

πiW (c0, yi)), (16)

which is a functional equation that relates I1, I2 and W . An equation fully similar
to (16), relating I2, I3 andW , can be obtained when considering temporal lotteries
that resolve in periods 2 and 3. These two equations form a system of generalized
distributivity equations which we solve in Appendix B using the work of Lundberg
(1982, 1985).

Fulfilling this system of distributivity equations is found to impose non-trivial
restrictions on ordinal preferences. We demonstrate that the time-aggregator has
to be affine up to a normalization, that is to write asW (c, x) = φ−1(u(c)+b(c)φ(x))

for some increasing (normalization) function φ. Only some stationary preferences
over deterministic consumption paths can thus be extended to monotone recursive
preferences over temporal lotteries.21 Unfortunately, it seems difficult to come up
with a straightforward intuition for this restriction on the time aggregator. The
restrictions on the certainty equivalents that appear in Proposition 1 can however
be made very intuitive, as we explain in the following section.

5.3 Restrictions on certainty equivalents

Let us take for granted that ordinal preferences admit a recursive representation
with an affine time aggregator W (c, x) = u(c) + b(c)x and consider a representa-
tion as in (13) with V (c0, c1, . . .) =

∑∞
i=0 u(ci)Π

i−1
j=0b(cj) and monotone certainty

equivalents It. Without further assumptions on the It, this yields preferences that
fulfill Monotonicity but not necessarily Stationarity. Adding Stationarity as a
requirement can be shown to provide very intuitive restrictions on the certainty
equivalents It, with direct implications for the certainty equivalent I that appears
in the recursive representation (U,W, I) used to formulate Proposition 1.

Consider indeed an agent comparing temporal lotteries that provide the same
consumption profile ct = (c0, . . . , ct−1) during the first t > 0 periods of time, but
may differ thereafter. On the one hand, with Stationarity, the initial t periods

21More precisely, it is known that preferences that admit such a time aggregator comprise
a much smaller class than the stationary preferences of Koopmans (1960): the former exhibit
a strong form of impatience, which fails generically within the broader class. See Koopmans,
Diamond, and Williamson (1964) and Epstein (1983) for details.
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of consumption do not matter and the ranking has to be independent of ct. On
the other hand, Monotonicity implies that future risks are evaluated in terms of
their impact on lifetime utility, which depends on the utility derived from the t
periods of initial consumption. In particular, take a lottery (c′0,

⊕
i πic

∞
i ) that

resolves after the first period. By continuity, there exists c∞ ∈ C∞ such that
(c′0,

⊕
i πic

∞
i ) ∼ c∞. By Stationarity, we can postpone the preceding lotteries by t

periods and insert a consumption vector ct without changing preferences. Namely,
we have the indifference: (ct, c′0,

⊕
i πic

∞
i ) ∼ (ct, c∞). In terms of the representation

(13), we obtain for all t > 0 the implication:

I1(
⊕
i

πiV (c′0, c
∞
i ))=V (c∞)⇒

(
It+1(

⊕
i

πiV (ct, c′0, c
∞
i ))=V (ct, c∞), ∀ct ∈ Ct

)
,

(17)
whose consequences are now investigated.

To begin, consider the case when the function b is constant (b(c) = β ∈ (0, 1)

for all c ∈ C), implying that V (c̃0, c̃1, . . .) =
∑∞

i=0 β
iu(c̃i). Then, inserting ct,

as in (17), impacts lifetime utility through an additive term,
∑t−1

i=0 β
iu(ci), and

a factor βt that multiplies continuation utility. Changing ct affects the additive
term, shifting lifetime utility by a constant. For implication (17) to hold, the
certainty equivalent It has to be translation-invariant. In other words, preferences
must exhibit constant absolute risk aversion with respect to lifetime utility.

Inserting ct, as in (17), has two other effects. The discount factor βt, which
multiplies continuation utility, scales down the risk on lifetime utility. Moreover,
the resolution of uncertainty is postponed from period 1 till period t + 1. Both
effects may generate a break-down of Stationarity, unless they are both separately
neutralized or they cancel each other out. Formally, equation (17) holds if:

It+1(µ) = βtI1(
1

βt
µ). (18)

One possibility is to have all It equal to a single uncertainty equivalent I fulfilling
I(µ) = βI( 1

β
µ). This will yield a representation exhibiting restricted indifference

toward the timing of resolution of uncertainty. The other possibility is to allow the
It to be different from each other, but related through (18). In that case, preference
for the timing of resolution of uncertainty is used to generate an amplification
mechanism that precisely compensates the decrease in risk due to the discount
factor.

The risk-sensitive preferences of Hansen and Sargent (1995) provide an example
in which Stationarity is preserved via the “amplification mechanism” shown in
equation (18). In that case, It = φ−1t Eφt with φt = 1−exp(−kβ−tx)

kβ−t
for some k ∈
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R \ {0}. Since β < 1, the coefficient of risk aversion kβ−t increases with t if
k > 0 and decreases with t if k < 0. This has direct consequences in terms of
the agent’s attitudes toward the timing of uncertainty. Indeed, in the case where
k > 0 the sequence of certainty equivalents It is decreasing (in the sense that
It+1(µ) ≤ It(µ) for all µ ∈M(R+) and t > 0), implying a (restricted) preference for
early resolution of uncertainty, while if k < 0 the sequence of certainty equivalents
It is increasing, implying a (restricted) preference for late resolution of uncertainty.
A relation therefore emerges between risk aversion and the agent’s attitudes toward
the timing of uncertainty, which is due to the necessity of compensating the scaling
down of the risk generated by the discount factor.22

Suppose now that the function b is non-constant. In this case, the contribution
of the first t periods to lifetime utility is slightly more complex, involving both an
additive term

∑t−1
i=0 u(cii)Π

i−1
j=0b(cj) and a term Πt−1

j=0b(cj) that multiplies continua-
tion utility. It is possible to change the consumption levels c0, . . . , ct−1, so as to
impact the additive term, without changing the multiplicative one.23 As in the
previous case, we can thus deduce that for the ranking of temporal lotteries to
be independent of the consumption profile (c0, . . . , ct−1), the certainty equivalents
It have to be translation-invariant. More generally, changes in (c0, . . . , ct−1) will
affect the multiplicative term Πt−1

j=0b(cj) as well. For (17) to hold, one must have:

It+1(µ) = Πt−1
j=0b(cj)I1

(
1

Πt−1
j=0b(cj)

µ

)
,

for all (c0, . . . , ct−1) ∈ Ct. The certainty equivalent I1 must thus be scale-invariant,
which implies that all the It are identical to I1. The other option, which involved
using different It with an amplification mechanism akin to the one of equation
(18), has no analogue when b is non-constant.

Knowing that the time aggregator W is affine, the restrictions on the certainty
equivalents It translate directly into restrictions on the certainty equivalent I used
in recursion (6), which we employed in the formulation of our results. Indeed,
in the case where b is constant, the certainty equivalent I is related to I1 by
I(µ) = 1

β
I1(βµ) and thus inherits the translation invariance of I1. In the case

where b is not constant, I = I1 and I is both translation- and scale-invariant.
22As was emphasized by Strzalecki (2013), multiplier preferences, which are the parallel of

risk-sensitive preferences in a setting of subjective uncertainty, exhibit a similar relation between
ambiguity aversion and preference for the timing of resolution of uncertainty.

23For example, one may consider permutations of the consumption levels during the first t
periods: e.g., using (c1, c0, c2, . . . , ct−1) instead of (c0, c1, c2, . . . , ct−1).

21



6 Monotonicity in a consumption-savings problem

This section illustrates the implications of Monotonicity in the context of a stan-
dard consumption-savings problem. One notable conclusion is that Monotonicity
permits simple comparative statics regarding the role of risk aversion on the op-
timal level of saving. We consider a two-period economy. At date 0, the agent
receives income y0 which is certain and which she can allocate between consump-
tion and savings. At date 1, one of two states, h or l, is realized. The states occur
with probabilities πh ∈ (0, 1) and πl = 1−πh, and determine both the income level
at date 1, equal to yh1 or yl1, and the gross return on savings, equal to Rh or Rl.

Throughout this section, we assume that preferences over deterministic con-
sumption paths are represented by the function U(c0, c1) = (cρ0 + βcρ1)

1
ρ , where

β > 0 and 1 > ρ 6= 0 is a parameter determining the elasticity of intertemporal
substitution. Risk preferences will either be unspecified, though assumed to be
monotone (for Lemma 2) or preferences à la Epstein-Zin-Weil (for Lemma 3 and
Figure 6), or risk-sensitive (for the monotone case in Figure 6).

In the presence of uncertainty, the agent has to choose a level of savings before
observing the state of the world. We denote by c∗0 the optimal consumption at date
0 and by s∗ the optimal level of savings. The budget constraints are as follows:

y0 − s∗ = c∗0 ≥ 0,

yκ1 +Rκs
∗ = c∗1,κ ≥ 0 for κ = h, l,

where c∗1,κ denotes consumption at date 1 if state κ occurs. We use sκ to denote
the level of savings chosen if the agent had perfect foresight, that is, if she knew
that state κ would occur for sure. We have:

sκ =
y0 − yκ1 (βRκ)

1
ρ−1

1 +Rκ(βRκ)
1
ρ−1

for κ = h, l.

Lemma 2 (savings with monotone preferences) Consider the savings prob-
lem described above. If preferences are monotone, then s∗ ∈ [min(sh, sl),max(sh, sl)].

Proof. Assume that s∗ > max(sh, sl), the case s∗ < min(sh, sl) being completely
symmetric. Since ordinal preferences are strictly convex, choosing ŝ = max(sh, sl)

provides higher utility in both states of the world. This means that (y0 − ŝ, yκ1 +

Rκŝ) � (y0 − s∗, yκ1 + Rκs
∗) for both states κ = h, l, where � denotes the strict

preference relation. Then, Monotonicity implies:

(y0 − ŝ, πl(yl1 +Rlŝ)⊕ πh(yh1 +Rhŝ)) � (y0 − s∗, πl(yl1 +Rls
∗)⊕ πh(yh1 +Rhs

∗)),

which contradicts the optimality of s∗.
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The result of Lemma 3 reflects therefore that with monotone preferences, an
agent would never choose a level of savings if another choice gives higher lifetime
utility in both states of the world.

The result does not extend to non-monotone preferences. Indeed, assume that
preferences can be represented by the function:

UEZ(c0, c̃1) =
(
cρ0 + β (E[c̃α1 ])

ρ
α

) 1
ρ
, (19)

where α 6= 0 is a parameter driving risk aversion, with larger α indicating lower
risk aversion. Equation (20) is a representation of Epstein-Zin-Weil preferences,
which are not monotone whenever ρ 6= α, as discussed in Section 4.3. Let sEZ be
the optimal level of savings for an agent with such preferences, that is, let

sEZ = arg max
s∈(−min(

yl1
Rl
,
yh1
Rh

),y0)

UEZ(y0 − s, ỹ1 + R̃s), (20)

where ỹ1 and R̃ denote the state-contingent income and asset returns.

Lemma 3 (savings with Epstein-Zin-Weil preferences) Consider the savings
problem described in equation (20). If ρ 6= α, there exist values of Rκ and yκ1 , κ =

h, l, for which the agent chooses a level of savings sEZ 6∈ [min(sh, sl),max(sh, sl)].

Proof. Assume yh1 6= yl1 and Rκ = 1
β
(
yκ1
y0

)1−ρ in state κ = h, l. In that case
sh = sl = 0, so that [min(sh, sl),max(sh, sl)] = {0}. However, we have

d

ds

(
logUEZ(y0 − s, ỹ1 + R̃s)

)∣∣∣
s=0

=
yρ−10

UEZ(y0 , ỹ1)

(
E[z̃1−

ρ
α ]

E[z̃]1−
ρ
α

− 1

)
, (21)

where z̃ = ỹα1 . Since ρ 6= 0 and ρ 6= α, the function x 7→ x1−
ρ
α is either strictly

concave or strictly convex. Using Jensen inequality, the derivative (21) cannot be
equal to zero. Thus sEZ 6= 0 and therefore sEZ 6∈ [min(sh, sl),max(sh, sl)].

To better understand the role of Monotonicity and the different conclusions
of Lemmas 2 and 3, note that the proof of Lemma 3 builds on the particular
case where the states h and l are such that, with perfect foresight, the saving
decisions in both states would be identical, that is, sl = sh. The lifetime utilities
in those states are however different. An agent, who lacks perfect foresight and has
non-monotone preferences, may prefer to reduce the difference in lifetime utilities
even if this reduces lifetime utility in both states. The saving decision sEZ then
responds to uncertainty and depends on the probabilities πl and πh. In contrast,
Monotonicity implies that the willingness to reduce risk, no matter how strong,
cannot lead to a choice that reduces lifetime utility in all states of the world. In
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the special case when sl = sh, this also means that the agent’s saving decision is
unaffected by the uncertainty.

Building on the two-period example in this section, we may also emphasize
that, because of the restrictions it imposes, Monotonicity affords an intuitive un-
derstanding of the role of risk aversion and simple comparative statics. Indeed,
choice under uncertainty can then be seen as making a trade-off between state-
specific utilities. If preferences are monotone and convex, the agent’s optimal
choice has to maximize a (possibly endogenous) convex combination of ex-post
lifetime utilities, just like a Pareto optimum has to maximize a convex combi-
nation of individual utilities. Risk aversion is then reflected in the weights that
appear in this convex combination. In particular, stronger risk aversion requires
that higher weights be assigned to the “bad states.” Bommier, Chassagnon, and
LeGrand, (2012) formalize this reasoning and show that, whenever Monotonicity
is assumed, simple dominance arguments make it possible to derive general and
intuitive conclusions about the role of risk aversion in many problems of interest.

A precautionary saving example. To illustrate the last point, consider a
simpler version of the above consumption-savings problem whereby only income
is random with yh1 > yl1. Since the asset return is the same in both states, we
have c1,h > c1,l whatever the agent’s saving decision. One can thus regard state
h as the “good state” and state l as the “bad state”. Saving choices are such
that sh < sl. With monotone preferences, the optimal saving choice has to lie
in the interval [sh, sl]. Moreover, as is demonstrated in Bommier, Chassagnon,
and LeGrand, (2012), an increase in risk aversion involves selecting a level of
savings that is closer to sl, the best response in the bad state. Intuitively, in
the presence of income uncertainty, saving provides an imperfect insurance device
which is more intensively used when the degree of risk aversion increases. Non-
monotone preferences may deliver different results: (i) the agent may choose to
save more than she would if any of the states, including the worst one, were to
occur for sure, and (ii) the role of risk aversion may be non-monotonic. Figure 6
illustrates the contrast between the saving patterns obtained with monotone and
non-monotone preferences.24

24The graphs are built using risk-sensitive preferences, URS(c0, c̃1) = cρ0 −
β
k log

(
E[e−kc̃

ρ
1 ]
)
,

and Epstein-Zin preferences (equation 19). We plot the optimal savings as a function of the risk
aversion parameter, k or −α. We use the following parameters: ρ = 1

2 , implying an intertemporal
elasticity of substitution equal to 2, Rl = Rh = β = 1, y0 = 100, yl1 = 100, yh1 = 125 and
πh = 1 − πl = 5%. In other words, the agent has a probability of 5% of earning a bonus equal
to a quarter of the base wage in the next period. The amount of savings sEU reported on the
graphs corresponds to what is obtained with the standard additive model (i.e. when α = ρ or
when k = 0). The optimal amount of saving in the good state, sh, lies further below and is not
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Figure 1: The relation between risk aversion and savings

7 Discussion

Our contribution provides an insight into the difficult question about which pref-
erence specification to use when modeling dynamic choice. Of course, there is no
simple take-home message, as the answer may surely depend on the context. We
may however stress some pros and cons that emerge from our analysis. As we
explain below, the choice of the domain is not innocuous either.

First, the standard model of intertemporal choice, which is at the intersection
of all models we mentioned, is well-behaved in all aspects and very tractable. Its
main drawback, which is well-known, is its lack of flexibility. Risk aversion is
indeed fully determined by the properties of ordinal preferences.

Maintaining recursivity and stationarity leaves a few options to get flexibility.
One is to impose monotonicity, which leads to the preferences studied in this paper.
If we restrict the certainty equivalent to be of the expected utility form, then we
arrive at the class of risk-sensitive preferences. A particular feature of risk-sensitive
preferences is that they are not homothetic, unless the elasticity of substitution is
equal to one.25 Homotheticity can be achieved by adopting a certainty equivalent
I that is both translation- and scale-invariant, but is not of the expected utility
form. Certainty equivalents based on the dual approach of Yaari (1987) fall into
this category.

Another option is to depart from monotonicity. The most popular specification
from Epstein and Zin (1989) and Weil (1990), see Section 4.3, is homothetic and

reported for reasons of scale.
25Homotheticity has well-known advantages. Recent contributions, however, have emphasized

that departing from homotheticity may help explain some empirical regularities such as the
relationship between trade flows and income per capita (Fieler, 2011) or between wealth and
stock holdings (Wachter and Yogo, 2010).
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has a certainty equivalent of the expected utility form. These preferences have
proved to be very tractable and have been used in a large number of studies.
As we explain in Section 6, however, there are applications in which abandoning
monotonicity may result in comparative statics that are difficult to interpret.

One can also gain flexibility, while preserving recursivity and monotonicity, by
weakening stationarity. One possibility, which maintains history independence, is
to use the recursion in (13) along with certainty equivalents It that are translation-
invariant but not linked through the amplification mechanism of equation (18).
The frameworks of Pye (1973) and van der Ploeg (1993) fall into this category.
One can go further and allow for history dependence, while preserving sufficient
structure so as to maintain reasonable tractability. A solution is to consider a
time-additive function V : C∞ → R together with certainty equivalents of the
form It = φ−1t Eφt. Though generating some history dependence, the history can
be summarized by a single variable, the stock of accumulated welfare. Economic
problems with such preferences can still be analyzed using standard dynamic pro-
gramming techniques, with the introduction of only one additional state variable.26

The last point we want to make is that the choice of domain deserves careful
consideration. Risk-sensitive preferences, which we showed to be the only class
of monotone Kreps-Porteus recursive preferences affording enough flexibility to
study risk aversion, impose a relationship between the agent’s risk aversion and her
attitudes toward the timing of resolution of uncertainty. As is explained in Section
5.3, this is a consequence of having a strictly positive rate of time preference, the
latter being unavoidable in infinite horizon settings. The assumption of an infinite
horizon setting, which was initially introduced by Koopmans (1960, p. 287) so as
“to avoid complications connected with the advancing age and finite life span of
the individual consumer,” turns out to have far-reaching, possibly undesirable,
consequences. The issue was already raised by Fisher who, in a comment that can
be found in Koopmans (1965, pp. 298–300), argues that one should rather depart
from the infinite horizon setting than accept the existence of time preferences.27

Following the same line of arguments, one might want to abandon the infinite
horizon setting so as to avoid the intertwinement of risk aversion and the agent’s
attitudes toward the timing of uncertainty. A possibility, pursued in Bommier
(2013), is to restrict the domain, replacing the assumption of an infinite horizon
by that of a possibly uncertain (but always finite) time horizon.

26Bommier (2008) uses such preferences to study life-cycle behavior, and assumes indifference
toward the timing of the resolution of uncertainty (i.e., with functions φt independent of t).

27According to Fisher, “The obvious conclusion from Koopmans’ paper, therefore, seems to me
to be that one ought to abandon the use of infinite horizons – not that one ought to abandon
certain ethical notions.”
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Appendix
This appendix is completed by the Electronic Supplementary Material (ESM),

containing technical details. All references to the ESM are prefixed with a letter
S (e.g., Lemma S.15 or Section S.2 ).

A Monotonicity in IID ambiguity models

We derive here a result analogous to Proposition 1 in a stationary IID ambiguity
setting similar to the one of Strzalecki (2013).28 By stationary IID ambiguity we
mean (i): restricting the analysis to cases where the passing of time has no impact
on the structure of the domain of choice; and (ii): introducing a set of assumptions
implying that a decision maker who uses, at all dates, the same history independent
preference relation is time consistent. This is a restrictive approach, as it precludes
the use of an arbitrary state space and rules out non trivial belief updating. This
framework has however proved very insightful in several instances. The exploration
of more general settings is left for further work.29 For mathematical rigor, we
provide an axiomatic derivation using assumptions that parallel Axioms 1 to 5
of the main body of the paper. This axiomatization implies a recursive utility
representation. The main contribution involves then showing that, like in the risk
setting, significant restrictions are further obtained when imposing monotonicity.

A.1 Setup

We consider a setup similar to that of Strzalecki (2013). Let S be a finite set
representing the states of the world to be realized in each period. We assume

28The notion of IID ambiguity was first introduced in Epstein and Schneider (2003a) in the
case of max-min expected utility representation.

29An investigation of the role of Monotonicity in the subjective uncertainty of Ju and Miao
(2012) can also be found in Bommier and LeGrand (2014).
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that S has at least three elements and let Σ := 2S be the associated algebra of
events. The full state space is Ω := S∞, with a state ω ∈ Ω specifying a complete
history (s1, s2, . . .).30 In each period t > 0, the individual knows the partial history
(s1, . . . , st). Such knowledge can be represented by a filtration G = (Gt)t on Ω

where G0 := {∅,Ω} and for every t > 0, Gt := Σt×{∅, S}∞. We again let C = [c, c]

be the set of all possible consumption levels. A consumption plan, or an act, is a
C-valued, G-adapted stochastic process, that is, a sequence h = (h0, h1, . . .) such
that ht : Ω→ C is Gt-measurable for every t. The set of all consumption plans is
denoted by H and endowed with the topology of pointwise convergence.

We consider a binary relation � on H and introduce a set of axioms similar
to those of Section 3. The axioms Weak order, Continuity, and Monotonicity for
Deterministic Prospects require no major modification. Below we state appropriate
analogues for Axioms 3, 4, 5, and 7. Some notation is needed first. Given an act
h ∈ H and state ω ∈ Ω, let h(ω) ∈ C∞ be the deterministic consumption stream
induced by h in state ω ∈ Ω, that is, h(ω) = (h0, h1(ω), . . .). Moreover for any act
h ∈ H and any s ∈ S we define the conditional act hs ∈ H by

∀ω = (s1, s2, . . .) ∈ Ω : hs(s1, s2, . . .) = h(s, s2, . . .) = (h0, h1(s, s2, . . .), . . .). (22)

The act hs is obtained from h when knowing that the first component of the state
of the world is equal to s ∈ S. Remark that hs(s1, s2, . . .) is independent of s1.

We can construct the continuation act hs,1 ∈ H from the conditional act hs by
removing the first period consumption. Formally, for any act h = (h0, h1, h2, . . .) ∈
H and any s ∈ S, the continuation act hs,1 is given by

∀ω = (s1, s2, . . .) ∈ Ω : hs,1(s1, s2, . . .) = (h1(s, s2, . . .), h2(s, s2, . . .), . . .). (23)

The continuation act hs,1 can be viewed as the consumption plan implied by h

starting at date 1 (ignoring date 0 consumption) and where the information re-
vealed at the beginning of date 1 (i.e., s1) is equal to s.

Last, for any c ∈ C and h ∈ H, we define the concatenated act (c, h) ∈ H by

(c, h) : ω = (s1, s2, . . .) ∈ Ω 7→ (c, h)(ω) = (c, h(s2, . . .)) ∈ C∞. (24)

The notions of conditional, continuation and concatenated acts are related to
each other. In particular, the conditional act is the concatenation of first pe-

30By setting Ω = S∞ we constrain the state space to have a stationary structure (i.e., Ω =
S × Ω). If no such stationary structure were assumed, the passing of time would impact the
structure of the preference domain. This means that (independently of time consistency issues)
the same preferences could not be used at all dates. The domain of choice would simply change
with time, which would require the use of different preference relations.
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riod consumption and the continuation act. Formally, for h = (h0, h1, . . .) ∈
H and s ∈ S, we have hs = (h0, h

s,1). Moreover, any concatenated act (c, h) has
continuation h. In mathematical terms, for any c ∈ C, h ∈ H and s ∈ S, we have
(c, h)s,1 = h.

We can now state the axioms that parallel those given in the risk setting in
Section 3.

Axiom A.3 For all acts h = (h0, h1, . . .) and ĥ = (ĥ0, ĥ1, . . .) in H with h0 = ĥ0:(
∀s ∈ S, hs � ĥs

)
⇒ h � ĥ.

If, in addition, one of the former rankings is strict, then the latter ranking is strict.

Axiom A.3 is a concise statement that embeds both a property of recursivity and
of state independence, the latter being implicit in the risk setting.31 To be precise,
recursivity alone would involve stating that for any h, ĥ ∈ H and σ ∈ S such that
h � ĥ, and hs = ĥs for all s 6= σ:(

g ∈ H, ĝ ∈ H, gσ = hσ, ĝσ = ĥσ and gs = ĝs for all s 6= σ
)
⇒ g � ĝ.

Such a property of recursivity makes it possible to combine time consistency
and consequentialism in dynamic frameworks (see Johnsen and Donaldson, 1985).
State independence extends the requirement of having g � ĝ to cases where there
exists a state of the world σ̂ ∈ S (possibly different from σ) such that gσ̂ = hσ,
ĝσ̂ = ĥσ and gs = ĝs for all s 6= σ̂. When plugged into a dynamic framework, the
state independence property translates into a form of history independence, in the
sense that preferences regarding the future have to be independent of which states
realized in past periods. Many papers relax the state-independent assumption al-
lowing for non-trivial updating of beliefs. A prominent example is Hayashi (2005),
who provides axiomatic foundations for more general recursive preferences, in a
more complex setting that combines both objective and subjective uncertainty. As
already mentioned, we leave for further work the exploration of the consequences
of assuming Monotonicity in such more general settings.

Axiom 4 (History Independence) rewrites as follows:

Axiom A.4 For all acts h = (h0, h1, . . .) and ĥ = (h0, ĥ1, . . .) in H, and ĥ0 ∈ C,

(h0, h1, . . .) � (h0, ĥ1, . . .)⇔ (ĥ0, h1, . . .) � (ĥ0, ĥ1, . . .).

Regarding stationarity, Axiom 5 becomes:
31In the risk setting, state independence is readily imposed by the fact that preferences are

defined over lotteries, and not over random variables.
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Axiom A.5 For all c ∈ C and h, ĥ ∈ H, we have (c, h) � (c, ĥ)⇔ h � ĥ.

This assumption states that the comparison of two acts that assume the same
deterministic consumption in period 0 and whose continuation acts are indepen-
dent of the information revealed in the first period, can be done by comparing
their respective continuation acts (with the same preference relationship �).

To avoid confusion, we shall emphasize that our stationary assumption differs
from that of Kochov (2015). In Kochov’s paper, the information tree has an arbi-
trary exogenous structure, which does not allow him to define stationarity in the
same way as we do. Kochov’s stationarity is a property of preference invariance
when changing the timing of consumption, while holding fixed the timing of res-
olution of uncertainty. In contradistinction, our stationarity assumption (Axiom
A.5) is a property of preference invariance when changing both the timing of con-
sumption and the timing of resolution of uncertainty. Indeed, for a given c ∈ C
and a given h ∈ H, the concatenated act (c, h), as defined in equation (24) is
obtained by adding one initial period consumption c and postponing the timing
of resolution of uncertainty by one period. For example, if h only depends on in-
formation revealed in the first period, then (c, h) only depends on the information
revealed in the second period. With respect to the mathematical formalism, the
difference between Kochov’s approach and ours lies in the way the concatenation
operation is defined.32 This eventually leads to assumptions of different nature,
unless the agent exhibits indifference to the timing of uncertainty resolution.

Central to our analysis is the assumption of Monotonicity:

Axiom A.7 (Monotonicity) For any h and ĥ in H:(
h(ω) � ĥ(ω) for all ω ∈ Ω

)
⇒ h � ĥ. (25)

The above monotonicity axiom can be found in Epstein and Schneider (2003b),
Maccheroni, Marinacci, and Rustichini (2006), and Kochov (2015). Note that this
axiom is “stronger” than the one we used in the risk setting. An exact analogue of
the risk axiom would restrict h and g to depend on the uncertainty resolving in a
single period only. As the analysis in the risk setting suggests, the representation
result we state in Proposition 4 below would continue to hold even if we were to
weaken Axiom A.7 accordingly. We adopt Axiom A.7 because it is standard in the
literature on subjective uncertainty and because we want to emphasize that the
preferences we consider are in fact monotone in the strong sense of Axiom A.7.33

32In Kochov (2015) the concatenation (c, h) is defined by (c, h)(s1, s2, . . .) = (c, h(s1, s2, . . .))
which differs from the definition introduced in equation (24).

33As already mentioned, the axiom employed in the risk setting can be strengthened so as
to obtain an analogue of Axiom A.7. The appropriate formulation is provided in Bommier and
LeGrand (2014).
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As in the risk setting, we say that a binary relation � on H is a monotone
recursive preference relation if it satisfies Axioms 1, 2, A.3, A.4, A.5, 6, and A.7.

A.2 Representation result

Let B0(Σ) be the set of simple, Σ-measurable functions from S into R+. The next
definitions parallel those in Section 4.1. A certainty equivalent I : B0(Σ) → R+

is a continuous, strictly increasing function such that I(x) = x for any x ∈ R+.
A certainty equivalent is translation-invariant if for all x ∈ R+ and f ∈ B0(Σ),
I(x + f) = x + I(f). It is scale-invariant if for all λ ∈ R+ and f ∈ B0(Σ),
I(λf) = λI(f). Given a function U : H → R and an act h ∈ H, we let U ◦ h1

denote the function s ∈ S 7→ U(hs,1). If U is a utility function, then U ◦ h1 is the
state contingent profile of continuation utilities induced by the act h in period 1.
Letting W : C × [0, 1]→ [0, 1] be a time aggregator, a recursive representation for
� is a tuple (U,W, I) such that U : H → R represents � and satisfies the recursion:

U(h) = W (h0, I(U ◦ h1)), (26)

where: U ◦ h1 : s ∈ S 7→ U(hs,1).

It is relatively simple to show that Axioms 1, 2, A.3, A.4 and A.5 are necessary
and sufficient conditions for preferences to have a recursive representation (Lemma
S.15 in Section S.2). Our contribution involves showing that further restrictions
on the recursive representation appear when assuming preference monotonicity.

Proposition 4 A binary relation � on H is a monotone recursive preference
relation if and only if it admits a recursive representation (U,W, I) such that either:

1. I is translation-invariant and W (c, x) = u(c) + βx satisfies the conditions
listed in the first case of Proposition 1, or

2. I is translation- and scale- invariant and W (c, x) = u(c) + b(c)x satisfies the
conditions listed in the second case of Proposition 1.

This proposition parallels Proposition 1 obtained in the risk setting. Its proof can
be found in Section S.2 of the ESM.

B Proof of Proposition 1

Necessity of the axioms is obvious. Proving sufficiency is a long task, but a good
account of the proof can be found in Sections B.1, B.2, and B.3. To save space,
we omit some technical details in these sections. These details can be found in
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the long version of the proof provided in the ESM. The core of the proof involves
solving a system of generalized distributivity equations.

A generalized distributivity equation is an equation of the form:

F (c,G(x1, . . . xm)) = H(F (c, x1), . . . , F (c, xm)), (27)

where F , G, andH are continuous and strictly increasing functions, with F defined
on some subset of R2 and G, H on subsets of Rm. Such equations were studied
in the case when m = 2 in Aczél (1966, Chap. 7) and under the assumption that
the solutions are twice continuously differentiable. Much later, Lundberg (1982,
1985) addressed the non-differentiable case. In Section B.1 we explain Lundberg’s
approach and how it can be adapted to our problem. The formal proof of our result
follows in Sections B.2 to B.7. Before entering into more details we introduce some
notation.

Notation. The composition of two functions f and g, when it is well-defined, is
denoted as fg. Given an integer n ≥ 0 and a function f : X → X, fn denotes the
nth-iterate of the function f . Thus, for example, f 2 stands for the function ff . In
what follows, we often work with an ambient space X and real valued functions
f, f ′ that are defined on proper subsets of X. When we write f(x), it is implicitly
understood that x lies in the domain of f . Similarly, when we write f > f ′, the
expression is understood to hold for x ∈ X such that f, f ′ are both defined.

B.1 Insights from Lundberg (1982, 1985)

Lundberg (1982, 1985) studies the equation (27) in the case where m = 2 and the
functions H, F , and G are defined on rectangular domains. His strategy can be
decomposed into three steps: 1) transforming the generalized distributivity equa-
tion with three unknown functions into a standard distributivity equation with
two unknown functions; 2) deriving a linear distributivity equation; 3) solving the
linear distributivity equation by showing that its solutions are necessarily differ-
entiable and then using differential calculus to compute the solutions. The crucial
point is the second one, which uses a fundamental result that relates iteration
groups and Abel functions. This section provides a brief account of Lundberg’s
approach without aiming at full rigor. In particular –and in this section only– we
are voluntarily evasive about domain issues, which are in fact crucial in the anal-
ysis. This allows us to skip many technicalities. All formal aspects are however
carefully exposed when we derive our own proof (Sections B.2 to B.7).
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Transforming a generalized distributivity equation into a standard dis-
tributivity equation. As in Lundberg (1982, 1985), we restrict ourselves to the
case where m = 2, so that equation (27) can be rewritten as:

F (c,G(x1, x2)) = H(F (c, x1), F (c, x2)). (28)

To transform the generalized distribution equation (28) into a standard distribu-
tivity equation, where G and H are constrained to be equal, we fix some c0 and
define a function (c, x) 7→ f(c, x) by F (c0, f(c, x)) = F (c, x). The function f can
be shown to exist on a restricted but non-trivial domain. Equality (28) applied
with c = c0 and (x′1, x

′
2) = (f(c, x1), f(c, x2)) yields

F (c0, G(f(c, x1), f(c, x2))) = H(F (c0, f(c, x1)), F (c0, f(c, x2))).

Using the definition of f and equation (28), we obtain F (c0, G(f(c, x1), f(c, x2))) =

H(F (c0, f(c, x1)), F (c0, f(c, x2))) and

f(c,G(x1, x2)) = G(f(c, x1), f(c, x2)), (29)

which is a standard distributivity equation (note that the domains of equations
(28) and (29) generally differ).

Deriving a linear distributivity equation. For any c, we define the function
fc by fc(z) := f(c, z). Let us now fix some c1. Equation (29), taken with c = c1,
provides:

fc1(G(x1, x2)) = G(fc1(x1), fc1(x2)). (30)

Lundberg’s approach to solving the latter equation is based on the notion of a
(continuous) iteration group. We start by providing some intuition for this notion
and how it relates to the equation at hand. First, one can show that f−1c1 , the
inverse of fc1 (when defined), is also a solution of (30). One can then prove by
induction that for any integer n, the iterates fnc1 and f−nc1 solve (30) as well. The
idea of an iteration group is to extend the notion of a function iterate fαc1 to non-
integer α. Namely, the iterates (fnc1)n∈Z, which solve (30), can be extended to a
family {fαc1}α of functions which solve (30) as well and where α varies continuously
in some open interval (−λ, λ). The elements of {fαc1}α∈(−λ,λ) “iterate” in the sense
that fα+α′c1

= fαc1f
α′
c1

and (fαc1)
−1 = f−αc1 . The family {fαc1}α∈(−λ,λ), denoted {f

α
c1
}α

when no confusion arises, is called an iteration group.
A fundamental property of iteration groups is that any fixed-point-free iteration

group admits an Abel function. In words, there exists a continuous and strictly in-
creasing function L (the so-called Abel function) such that for all α ∈ (−λ, λ),
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fαc1(x1) = L−1(α + L(x1)) (see Lundberg 1982, p. 79, for more details about
Abel functions).34 Equation (30) becomes L−1(α + LG(x1, x2)) = G(L−1(α +

L(x1)), L
−1(α + L(x2))), or after defining G̃(x1, x2) := LG(L−1(x1), L

−1(x2)) and
y1 := L(x1) and y2 := L(x2):

α + G̃(y1, y2) = G̃(α + y1, α + y2).

Therefore, G̃ is translation-invariant, which makes it possible to define a function
φ by setting φ(y2 − y1) := G̃(y1, y2) − y1. Denoting f̃c := LfcL

−1, equation (30)
rewrites as f̃c(G̃(y1, y2)) = G̃(f̃c(y1), f̃c(y2)) or using the definition of φ as:

f̃c(x1 + φ(y2 − y1)) = φ(f̃c(y2)− f̃c(y1)) + f̃c(y1), (31)

which is a linear distributivity equation.

Differential methods to solve linear distributivity equations. Lundberg
(1985) studies linear distributivity equations of the form:

f(x1 + φ(y2 − y1)) = ψ(f(y2)− f(y1)) + f(y1), (32)

which is slightly more general than (31), and corresponds to the linearization of a
generalized distributivity equation as in (28). Lundberg shows that any solution of
(32) is necessarily continuously differentiable, and then uses differential calculus to
compute solutions, an explicit account of which can be found in Lundberg (1985).

B.2 Road map for our proof

The first part of the proof shows that combining Monotonicity and Stationarity
leads to a system of generalized distribution equations. The intuition was already
given in Section 5.3, but Section B.3 provides a precise formal derivation. The
problem we then need to solve differs from the one addressed by Lundberg in
three respects. Firstly, we do not restrict ourselves to the case when m = 2 (see
equation (32)). Secondly, we have to solve a system of generalized distributivity
equations that are related to each other, and not a single generalized distributivity
equation. Lastly, these generalized distributivity equations hold on domains that
are not rectangular, in contrast to Lundberg’s original work. These aspects, and in
particular the domain issues, forbid a direct application of Lundberg’s results, even
though the general strategy remains valid. The remainder of the proof is organized
as follows. 1) In Sections B.4 to B.6, we construct an iteration group that allows

34This is a fundamental result that traces back to the solution of the translation equation (see
Aczél 1966, Section 1 in Chap. 6).
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us to transform our system of generalized distributivity equations into a system
of linear distributivity equations. 2) Once these linear distributivity equations are
derived, the results of Lundberg (1985) can be applied. Because we have a system
of distributivity equations, where equations are related to each other, we can show
that there remain only two possible solutions. These solutions provide the two
cases of Proposition 1. 3) The final part of the proof in Section B.7 elicits the
restrictions imposed by Axiom 6.

B.3 Deriving a system of distributivity equations

From Lemma 1, the preference relation � has a recursive representation (U,W, I).
It is w.l.o.g. to assume that U(D) = [0, 1]. Fix some integer m > 2. Let W0 :=

[0, 1]m and

W1 := {(W (c, x1), . . . ,W (c, xm)) : c ∈ C, (x1, . . . , xm) ∈ W0},

W2 := {(W (c, x1), . . . ,W (c, xm)) : c ∈ C, (x1, . . . , xm) ∈ W1}.

Note that W0 ⊃ W1 ⊃ W2.
Now fix (π1, . . . , πm) ∈ (0, 1)m such that

∑
i πi = 1. For every (x1, . . . , xm) ∈

[0, 1]m, let (π1, x1; . . . ; πm, xm) be the lottery in M([0, 1]) that gives xk with prob-
ability πk. Define a function G0 :W0 → [0, 1] by

G0(x1, . . . , xm) := I((π1, x1; . . . ; πm, xm)), ∀(x1, . . . , xm) ∈ [0, 1]m, (33)

which is the certainty equivalent of the lottery (π1, x1; . . . ; πm, xm). For k ∈ {1, 2},
define a function Gk :Wk → [0, 1] inductively by letting

Gk+1(W (c, x1), . . . ,W (c, xm)) := W (c,Gk(x1, . . . , xm)). (34)

The functions Gk, k ∈ {1, 2}, are well-defined by Monotonicity. For every c ∈ C,
let Fc denote the function x 7→ W (c, x) from [0, 1] into [0, 1]. Each function Fc is
continuous and strictly increasing. Then, equation (34) becomes for k = 1, 2:G1(Fc(x1), . . . , Fc(xm)) = FcG0(x1, . . . , xm), c ∈ C, (x1, . . . , xm) ∈ W1,

G2(Fc(x1), . . . , Fc(xm)) = FcG1(x1, . . . , xm), c ∈ C, (x1, . . . , xm) ∈ W2,
(35)

which is a system of generalized distributivity equations. The two equations in
(35) are related through the function G1, which appears in both.

Following the approach of Section B.1, we can derive standard distributivity
equations from the generalized distributivity equations in (35). To simplify our
notation, let β := W (c, 1). If Fc(0) > β, let c∗ be such that Fc∗(0) = β. Alterna-
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tively, if Fc(0) ≤ β, let c∗ := c. In each case, we have F−1c [0, β] = [0, F−1c (β)] 6= ∅
for every c < c∗. Take c < c∗, k ∈ {0, 1}, and (x1, . . . , xm) ∈ [0, F−1c (β)]m ∩
Wk. Applying F−1c to both sides of (35) implies F−1c Gk+1(Fc(x1), . . . , Fc(xm)) =

F−1c FcGk(x1, . . . , xm). Combining this equation for an arbitrary c with the same
equation for c = c yields

Gk(F
−1
c Fc(x1), . . . , F

−1
c Fc(xm)) = F−1c FcGk(x1, . . . , xm). (36)

Defining fc := F−1c Fc, (36) becomes for c < c∗, (x1, . . . , xm) ∈ [0, F−1c (β)]m ∩Wk

Gk(fc(x1), . . . , fc(xm)) = fcGk(x1, . . . , xm), k = 0, 1, (37)

which are distributivity equations similar to (29).

B.4 Constructing an iteration group

This part requires some mathematical machinery from Lundberg (1982). Given a
proper interval A ⊂ R, let D(A) be the set of all continuous, strictly increasing
functions f whose domain and range are intervals contained in A and whose graphs
disconnectA2. The notion of iteration group was already introduced in Section B.1.
Here, when we specify an iteration group {fα} ⊂ D(A), we assume that the group
is nontrivial, that is, that fα 6= f 0 (f 0 is the identity function on A) for at least one
α 6= 0. If the group is nontrivial, then fα 6= f 0 for all α 6= 0. Furthermore, when we
specify an iteration group {fα}α∈(−λ,λ) on a bounded interval A, we assume that the
group is maximal, that is, there is no other iteration group {gα}α∈(−λ′,λ′) ⊂ D(A)

such that λ′ > λ and gα = fα for all α ∈ (−λ, λ).
Let (fn)n be a sequence of functions in D(A). A function f ∈ D(A) is the

closed limit of (fn)n, which we denote as fn →L f , if the graph of f is the closed
limit of the graphs of the functions fn.35 If A is a closed interval and the graphs
of fn and f are closed, then fn →L f if and only if the graphs of fn converge to
the graph of f in the Hausdorff metric. We write fn →H f to denote the latter
type of convergence. The sequence (fn)n, fn ∈ D(A), generates the iteration group
{fα} on A if for every α ∈ (−λ, λ), there exists a sequence (pn)n of integers such
that fpnn →L f

α.
We come back to the proof of the theorem. Let j be the identity function on

[0, 1]. Fix a sequence (cn)n such that cn ∈ (c, c∗) for every n and the sequence
decreases monotonically to c. Let (fcn)n be the associated sequence of functions
where fcn = F−1c Fcn for every n. We note several properties of the sequence
(fcn)n. First, fcn > fcn+1 > j for every n. Second, each function fcn has domain

35See Aliprantis and Border (1999, p. 109) for the definition of a closed limit.
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Domn := [0, F−1cn (β)] and range [fcn(0), 1]. It follows that the graph of each function
fcn disconnects [0, 1]2 so that fcn ∈ D([0, 1]). Another immediate implication is
that Domn →H [0, 1], which implies that for every x ∈ (0, 1), there is k > 0 such
that fcn(x) is defined for all n ≥ k. The sequence (fck(x), fck+1

(x), . . .) converges
to x and the convergence can be shown to be uniform (see Lemma S.1 in the ESM).

The next two lemmas are key for solving the distributivity equation.

Lemma 4 (constructing an iteration group) There exists an iteration group
{fα}α∈(−λ,λ) on (0, 1) such that λ > 1, fα > j for all α > 0, and

fαG0(x1, . . . , xm) = G0(f
α(x1), . . . , f

α(xm)), (38)

for all (x1, . . . , xm) ∈ [0, 1]m and α ∈ (−λ, λ) for which the equation is well-defined.

Proof. We know that fcn →L j, fcn 6= j for every n, and Domn →L (0, 1). Theo-
rem 4.16 in Lundberg (1982) shows that (fcn)n has a subsequence that generates
the desired iteration group.36 Abusing notation, from now on we write (fcn)n for
the latter subsequence.

Lemma 5 (constructing an Abel function) There is a continuous strictly in-
creasing function L : (0, 1)→ R such that fα(x) = L−1(L(x) + α) for all x in the
domain of fα and all α ∈ (−λ, λ).

Proof. We know that fα > j for all α ∈ (0, λ). Since fα is the inverse of f−α, the
latter implies that fα < j for all α ∈ (−λ, 0). In particular, none of the functions
fα, α 6= 0, has a fixed point. As explained in Section B.1, the iteration group
then has an Abel function, i.e., a continuous function L : (0, 1) → R such that
fα(x) = L−1(α + L(x)) for every α ∈ (−λ, λ) and every x in the domain of fα.
Since fα > j for all α > 0, the function L is strictly increasing.

Recall that each function fcn is defined in a right neighborhood of 0, while its
range includes a left neighborhood of 1. It follows that for each α > 0, fα(0) :=

limx↘0 f
α(x) and for each α < 0, fα(1) := limx↗1 f

α(x) are well-defined. From
now on we assume that {fα} is such that f 1(0) > 0 and f−1(1) < 1.37 Under this
assumption, we have fα(0) > 0 for all α > 0 and fα(1) < 1 for all α < 0 as well as
L(0) := limx↘0 L(x) > −∞ and L(1) := limx↗1 L(x) < +∞. Using the latter, we
now argue that the Abel function L can be chosen so that L(0) = 0 and L(1) = 1.
First, since L is defined up to a translation, we can choose L so that L(0) = 0. To

36The statement of Theorem 4.16 in in Lundberg (1982) does not say that λ > 1 and fα > j
for all α > 0 but these properties of the iteration group follow from the proof of the theorem and
the fact that fcn > j for every n.

37Section S.1.9 in the ESM shows how to modify the proof if either f1(0) = 0 or f−1(1) = 1.
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see that L can be chosen so that L(1) = 1, observe that λ = limα↗λ f
α(0) = L(1).

Relabeling the iteration group {fα}α∈(−λ,λ) so that λ = 1 implies that L(1) = 1.

B.5 A monotone transformation of utility

Since L : [0, 1] → [0, 1] is strictly increasing, the function Ũ := LU : D → [0, 1]

represents � on D. Moreover, the function Ũ is part of a recursive representation
(Ũ , W̃ , Ĩ) where

W̃ (c, x) :=LW (c, L−1(x)) ∀x ∈ [0, 1], c ∈ C,

Ĩ(µ) :=LI(µ ◦ L−1) ∀µ ∈M([0, 1]).

For every c ∈ C, let F̃c := LFcL
−1. For k ∈ {0, 1, 2}, we define G̃k(x1, . . . , xm) :=

LGk(L
−1(x1), . . . , L

−1(xm)). Define W̃0 := [0, 1]m and inductively for k ∈ {1, 2},

W̃k := {(F̃c(x1), . . . , F̃c(xm)) : c ∈ C, (x1, . . . , xm) ∈ W̃k−1}. (39)

By definition, G̃k, k ∈ {0, 1, 2}, has domain W̃k. Also, W̃0 ⊃ W̃1 ⊃ W̃2. As in
Section B.1, we use the Abel function to prove that G̃0 is translation-invariant.

Lemma 6 (translation invariance G̃0) For every (x1, . . . , xm) ∈ W̃0, α ∈ (−1, 1)

such that (α + x1, . . . , α + xm) ∈ W̃0, we have G̃0(α + x1, . . . , α + xm) = α +

G̃0(x1, . . . , xm).

Proof. Let (x1, . . . , xm) and α be as in the statement of the lemma. Let yi =

L−1(xi) for i = 1, . . . ,m. Then,

G̃0(α + x1, . . . , α + xm) =LG0(L
−1(α + L(y1)), . . . , L

−1(α + L(ym)))

=LG0(f
α(y1), . . . , f

α(ym)) = Lfα(G0(y1, . . . , ym))

=L(G0(y1, . . . , ym)) + α = G̃0(x1, . . . , xm) + α.

Because of the translation invariance of G0, we can define a function φ0 by

φ0(x2 − x1) := G̃0(x1, x2, x2, . . . , x2)− x1, ∀x1, x2 ∈ [0, 1]. (40)

In Lemma S.5, we prove that φ0 is continuous and strictly increasing and that
j − φ0 is strictly decreasing.
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B.6 Two linear distributivity equations

We show in Section S.1.5 of the ESM that a result similar to Lemma 6, which
proved the translation invariance of G̃0, holds for the functions G̃1 and G̃2 defined
in Section B.5. The only difference is due to the fact that G̃1 and G̃2 are only
defined on the non-rectangular domains ∪c∈CÃmc and ∪c∈CÃmcc, respectively, where
for all c ∈ C:

Ãmc : = {(F̃c(x1), . . . , F̃c(xm) : (x1, . . . , xm) ∈ [0, 1]m},

Ãmcc : = {(F̃c(x1), . . . , F̃c(xm) : (x1, . . . , xm) ∈ Ãmc }.

For every c ∈ C, the functions G̃1 and G̃2 are translation-invariant on Ãmc and
Ãmcc, respectively. This makes it possible to define functions φc1 and φc2 by: φc1(x2−
x1) := G̃1(x1, x2, . . . , x2) − x1 for all x1, x2 such that (x1, x2, . . . , x2) ∈ Ãmc , and
φc2(x2 − x1) := G̃2(x1, x2, . . . , x2) − x1 for all x1, x2 such that (x1, x2, . . . , x2) ∈
Ãmcc. The functions G̃0, G̃1, G̃2, and F̃c satisfy analogues of the equations in (35).
Combining these equations with the definitions of F̃c, φ0, φc1, and φc2, we obtain:

F̃c(x1 + φ0(x2 − x1)) = F̃c(x1) + φc1(F̃c(x2)− F̃c(x1)), (41)

F̃c(x1 + φc1(x2 − x1)) = F̃c(x1) + φc2(F̃c(x2)− F̃c(x1)), (42)

where the first equation holds for all c ∈ C and x1, x2 ∈ [0, 1], while the second
holds for all c and x1, x2 such that (x1, x2, . . . , x2) ∈ Ãmc . Equations such as (41)
and (42) are studied in Lundberg (1985). His results, Theorem 11.1 in particular,
are applicable since all functions are continuous, F̃c, φ0, φ

c
1, φ

c
2 are strictly increasing

and j−φ0, j−φc1, j−φc2 are strictly decreasing (see Lemma S.5 and Section S.1.5).
For any given c ∈ C, Theorem 11.1 in Lundberg (1985) shows that there are
four cases for the functions F̃c, φc1 that solve (41). As in Lundberg (1985), we
enumerate those cases: a), b), c), d). In addition, we let Ωa) be the set of all c ∈ C
such that the functions F̃c, φc1 belong to case a). The sets Ωb),Ωc),Ωd) are defined
analogously. Lemma S.8 uses continuity arguments to show that all but one of
those sets are empty, meaning that the system in (41)–(42) is solved by functions
that belong to the same set.

Cases b) and c) can be ruled out. Indeed, for some c ∈ C, equations (41) and
(42) are linked by the functions F̃c and φc1, which appear in both equations but in
a ‘different position’. However, it is known from Lundberg (1985), that functions
that appear in ‘different positions’ have different functional forms, which rules out
b) and c).

We are thus left with cases a) and b) which we refer to as the affine and
non-affine case and which we study in detail in Section S.1.7. To summarize, the
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affine case corresponds to F̃c(x) = u(c) + b(c)x for every c ∈ C and x ∈ [0, 1].
Moreover, the functions u, b : C → R are continuous and b(C) ⊂ (0, 1). While G̃0

is translation-invariant (Lemma 6), it can be further shown to be scale-invariant
when the function b is not constant. The non-affine case means that F̃c(x) =
1
a

log(u(c) + b(c)eax), with b(·) not constant. Even though this formulation looks
quite different, defining F̂c := HF̃H−1 and Ĝ0 = HG̃0H

−1 with H(x) := eax leads
again to the affine case, with a function Ĝ0 that is both scale- and translation-
invariant.

B.7 Concluding the proof of Proposition 1

The preceding arguments show that is always possible to renormalize the utility
representation, so as to obtain an affine time aggregator, W (c, x) = u(c) + b(c)x,
and a renormalized certainty equivalent (G̃0 in the affine case and Ĝ0 in the non-
affine case) which is translation-invariant (Lemmas 6 and S.13), and furthermore
scale-invariant when the function b is not constant (Lemmas S.10 and S.11). Recall
from (33) that G0 was defined by fixingm > 1 and a probability vector (π1, . . . , πm)

and projecting I onto [0, 1]m. Since m and (π1, . . . , πm) were arbitrary, we obtain
that the recursive representation (U,W, I) of � can be renormalized so that:

– case 1: W (c, x) = u(c) + βx and I is translation-invariant on M f (U),

– case 2: W (c, x) = u(c) + b(c)x and I is translation- and scale-invariant on
M f (U),

where U := U(D) and M f (U) is the set of simple lotteries with prizes drawn from
the interval U . In the first case, u : C → R is continuous and β ∈ (0, 1). In the
second, u, b : C → R are continuous and b(C) ⊂ (0, 1). Since M f (U) is dense in
M(U) and the certainty equivalent I : M(U) → U is continuous, we know that if
I is translation-invariant on M f (U), then I is also translation-invariant on M(U).
An identical argument holds for scale invariance.

To conclude the proof, it remains to take full account of the implications of
Axiom 6 (Deterministic Monotonicity). First, note that the main features of the
representations (U,W, I) we have derived so far –thatW (c, x) is affine in x and that
I is translation- and, in the appropriate case, also scale-invariant– are preserved
under positive affine transformations of utility. It is therefore w.l.o.g. to assume
that the representations are chosen so that U(D) = [0, 1]. This normalization,
which we maintain in the statement of Proposition 1, makes it possible to express
the implications of Axiom 6 in terms of the representation. When discounting
is exogenous, everything is standard in that Axiom 6 is equivalent to the strict
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monotonicity of the function u : C → R. When discounting is endogenous, Axiom
6 is equivalent to the strict monotonicity of the functions u, u + b : C → R,
provided that U(D) = [0, 1]. To see this, note that U(D) = [0, 1] is equivalent
to U(c, c, . . .) = 0 and U(c, c, . . .) = 1. The latter imply that for all c ∈ C, we
have U(c, c, c, . . .) = u(c) and U(c, c, c, . . .) = u(c) + b(c), from where the strict
monotonicity of u, u+ b follows.

C Proof of Proposition 3

The first point of the proposition is proved in Chew and Epstein (1991). For the
second point, when preferences are represented as in the first case of Proposition
1, we have

U(c0,
n⊕
i=1

πi(c1, ci,mi)) = u(c0) + βu(c1) + βI(β
n⊕
i=1

πiU(ci,mi)),

while

U(c0, c1,
n⊕
i=1

πi(ci,mi)) = u(c0) + βu(c1) + β2I(
n⊕
i=1

πiU(ci,mi)).

Preference for early resolution of uncertainty is thus obtained if and only if
I(β

⊕n
i=1 πiU(ci,mi)) ≥ βI(

⊕n
i=1 πiU(ci,mi)), for all n > 0, (ci,mi) ∈ D, and

(πi) ∈ [0, 1]n such that
∑n

i=1 πi = 1. By continuity of I, that is equivalent to
I(βµ) ≥ βI(µ) for all µ ∈M([0, 1]).

For preferences that can be represented as in the second case of Proposition 1,
we immediately get U(c0,

⊕n
i=1 πi(c1, ci,mi)) = U(c0, c1,

⊕n
i=1 πi(ci,mi)), implying

both preference for early and for late resolution of uncertainty.
For the last point, we know from Proposition 2 that the Kreps-Porteus case

corresponds to having a certainty equivalent of the expected utility form, I =

φ−1E φ, with φ(x) = 1−exp(−kx)
k

for some k ∈ R, the linear case being obtained by
continuity when k = 0. Since β < 1, I(βµ) ≥ βI(µ) (resp: I(βµ) ≤ βI(µ)) is
equivalent to k ≥ 0 (resp. k ≤ 0). From Kreps and Porteus (1978), this is known
to imply a preference for early (resp. late) resolution of uncertainty.
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