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Abstract

This article investigates how recursive preferences can be used in the context
of lifecycle models featuring uncertain and endogenous lifespans. We provide
representation results showing how recursive preferences may be homothetic
or fulfill a simple form of monotonicity with respect to first-order stochastic
dominance – called ordinal dominance. While homotheticity appears to be
very restrictive, constraining the intertemporal elasticity of substitution to be
above one, ordinal dominance points to the risk-sensitive preferences of Hansen
and Sargent (1995), on which we focus for the second part of the paper. We
then discuss the theoretical impact of risk aversion, and illustrate the relevance
of our findings by looking at the consumption-mortality trade-offs faced by a
benevolent planner during a pandemic.
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1 Introduction

Major epidemics like the plague, the Spanish flu or the ongoing Covid-19 pandemic

may cause the death of millions of people. One solution to reduce the number of

fatalities involves limiting human interactions, which however may imply a huge

economic cost. Societal decision-making therefore has to consider a trade-off between

survival probabilities and wealth, which requires an economic value be set (implicitly

or explicitly) for mortality risk reductions. The literature that addresses this trade-off

typically uses the seminal theoretical framework introduced by Yaari (1965), where

agents’ lifetime utility is the sum of instantaneous utilities weighted by survival

probabilities. As is well-known, such additive models lack flexibility to disentangle

risk aversion from intertemporal elasticity of substitution (IES, henceforth). Using

additive models thus prevents proper accounting for risk aversion, which, however, is

likely to be a major behavioral trait in the presence of mortality risk.

Following the works of Epstein and Zin (1989) and Weil (1989) (EZW, henceforth),

recursive utility models have become the most popular tool to address the role of

risk aversion in intertemporal contexts, with applications in numerous fields. While

recursive preferences were initially developed to address long-standing puzzles in the

macro-finance literature, they are now increasingly employed in other fields such

as the economics of climate change, health economics, or household finance. In

the current paper, we provide a theoretical investigation on how recursive models

may help clarify the role of risk aversion when discussing the value of mortality risk

reduction. We then highlight how accounting for risk aversion may provide new

insights when considering wealth-survival trade-offs.

Our paper includes a theoretical part, with three contributions, and an application

to epidemics. Our first theoretical contribution consists in two representation results.

Our starting point are recursive preferences, that are monotone and do not system-

atically predict a negative value of life. Monotonicity means that an agent’s utility

increases with consumption, while the assumption of a non-systematically negative
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value of life requires that an agent prefers to be alive and to consume rather than to

be dead, at least for some consumption levels. Our first representation result is that

when we further impose Homotheticity to these well-behaved preferences, we obtain

either standard additive preferences or (homothetic) EZW preferences, but where the

IES is restricted to be greater than one and the coefficient of risk aversion smaller

than one. When instead of Homotheticity, we impose Ordinal Dominance (similar

to monotonicity with respect to first-order stochastic dominance), we obtain risk-

sensitive preferences à la Hansen and Sargent (1995) – with no particular restriction

on utility parameters. The only preferences simultaneously fulfilling Homotheticity

and Ordinal Dominance are the standard additive preferences, which do not allow

one to separate IES from risk aversion. A consequence of these representation results

is that disentangling risk aversion from IES requires either Ordinal Dominance or

Homotheticity be abandoned. On the one hand, opting for Homotheticity and

giving up Ordinal Dominance has three main drawbacks: (i) the agent may end up

opting for dominated choices (see Bommier et al., 2017 or Bommier et al., 2020 for

illustrations), (ii) the IES and risk aversion parameters are constrained in a way that

is no consistent with empirical evidence, and (iii) it involves assuming that rich and

poor behave identically (up to a wealth scaling factor) which is also inconsistent with

empirical evidence. On the other hand, opting for Ordinal Dominance and discarding

Homotheticity mostly slightly deters model tractability, but preserves model insights

and does not constrain model parameters. Our take-away of these representation

results is that imposing Homotheticity for tractability reasons is extremely costly.

Meanwhile, the risk-sensitive framework provides an appealing approach to discuss

value of life matters, with sufficient flexibility to account for risk aversion.

Our second theoretical contribution is to explain why our results regarding EZW

specifications differ from the ones in the literature, and especially from those of

Córdoba and Ripoll (2017) – hereafter CR – and Hugonnier et al. (2013) – hereafter

HPSA.1 These papers argued that homothetic EZW specifications could cope with
1These papers, which were developed independently provide very similar modelling approaches,
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an IES smaller than one. We explain that this actually results from a mathematical

error in CR, and from the assumption of an unrealistic preference domain in HPSA.

Our third theoretical contribution involves showing that working with risk-

sensitive preferences allows one to derive results regarding the discount rate and the

value of mortality risk reduction. Regarding the discount rate, we show that agents

become more impatient (and have a lower discount rate) when: (i) they are more risk

averse, (ii) they face a higher mortality probability, and (iii) their continuation utility

is higher. The value of mortality risk reduction is also impacted by risk aversion and

continuous utility. From a purely theoretical point of view, the impact of risk aversion

is ambiguous, reflecting general results on the relation between optimal prevention

and risk aversion (see, e.g., Jullien et al., 1999). The impact of continuation utility

is unambiguously positive. Numerical illustrations using a realistic mortality pattern

complement these findings, providing a quantitatively clear picture: risk aversion

tends to increase the value of mortality risk reduction, and also changes the relation

between age and the value of mortality risk reduction. The explanation for this

latter aspect is that risk aversion amplifies the willingness to avoid particular adverse

outcomes (such as death at a young age), compared to the willingness to avoid less

adverse outcomes (such as death at an advanced age).

In order to illustrate the relevance of using a recursive specification, we focus

on two real-world cases, namely the Covid-19 and 1918 influenza pandemics, and

demonstrate how recursive preferences alter the conclusions regarding the optimal

consumption-mortality trade-off. Our results highlight that the sign of corrections

depends on whether the pandemic predominantly impacts older people (as with

Covid-19) or younger people (as with the 1918 influenza outbreak). For Covid-19,

accounting for risk aversion through recursive preferences would tend to reduce the

amount of consumption that the social planner would be willing to sacrifice in order

based on EZW preferences. The main difference is that HPSA uses a continuous-time setting, which
makes the mathematics more complex, while CR assumes that time is discrete. Both papers have
been used in several follow-up articles, which suffer from the same shortcomings as the ones we
detail in the current contribution.
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to limit mortality. Concretely, this would argue in favor of a quicker reopening of the

economy, or a less severe lock-down, than what is advised when using usual additive

preferences. For the 1918 influenza, the conclusions are inverse. The reason for

those findings is that models are usually calibrated upon observations of wage-risk

trade-offs made by workers (thus of “middle-aged” people), while accounting for

the mortality impact of pandemics requires us to infer the value of mortality risk

reduction at younger and older ages. A form of extrapolation is thus needed, which

is typically achieved through the use of a specific model of individual preferences.

The structure of the model adopted ends up playing a key role in this extrapolation.

In particular, in comparison to additive models, recursive models end up giving

greater weight to particularly adverse consequences (i.e., death of younger people)

and less weight to less dramatic consequences (i.e., death of older people). This of

course reflects the very natural role of risk aversion, which could not be properly

investigated with the standard additive model.

2 Studying the value of life with recursive models

2.1 Temporal lotteries with uncertain lifetime

Recursive models were first suggested to model preferences over temporal lotteries in

fixed or infinite horizon settings. To model choices under uncertain lifespans, we need

to consider lives of unequal lengths. For the sake of simplicity we will assume that

there is a finite upper bound Tmax on how long a life can be.2 We will use the letter
2Since Tmax can be arbitrarily large, there is no significant loss of generality. Moreover, the

assumption of a finite lifespan is consistent with demographic evidence. Jeanne Calment is reported
to have the longest lifespan of 122 years and 164 days and is the only human to have lived beyond
the age of 120 years. Maximal biological age is also supported by biological evidence (Weon and Je,
2009; Dong et al., 2016).
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d to describe the death state and define the set of temporal lotteries as follows:3
Dt = {d} for t = Tmax,

Dt = (R+ ×M(Dt+1)) ∪ {d} for t ∈ {0, . . . , Tmax − 1},

where for any set X the notation M(X) denotes the set of simple lotteries with

outcomes in X. As is usual for any element x ∈ X we shall use the same notation x

to denote the degenerate lottery in M(X) which gives x with probability one.

An element of Dt different from d (thus reflecting a situation where the agent is

alive in period t) will be typically denoted by a pair (ct,mt) where ct ∈ R+ is the

consumption in period t and mt ∈M(Dt+1) is a lottery over future states. For any

mt ∈M(Dt+1), we define the survival probability π(mt), by π(mt) = 1− Probmt(d),

where Probmt(d) is the occurrence probability of being dead in period t+ 1. When

π(mt) 6= 0, we will also define mS
t ∈M(Dt+1 \ {d}) by:

mt = π(mt)mS
t ⊕ (1− πt(mt))d, (1)

where ⊕ denotes the standard mixture operation over lotteries. The above equation

thus simply states that mt can be seen as a mixture, with weights (1 − π(mt))

and π(mt), of a lottery that gives the death state for sure and a lottery mS
t whose

outcomes exclude (immediate) death. For an element (ct,mt) ∈ Dt \ {d}, which

describes the case of an agent alive in period t, the probability π(mt) is the probability

of staying alive from period t to period t+ 1, and mS
t is the lottery describing the

distribution of outcomes in period t+ 1 conditional on being alive.

We (recursively) define a “multiplication by a scalar operation” over the spaces

Dt as follows:
λd = d for all λ ∈ R+,

λ(ct,m) = (λct, λm) for all λ ∈ R+ and (ct,m) ∈M(Dt \ {d}),
(2)

3The death state d is neither a consumption level nor a utility level. It has no other interpretation
but materializing the terminal leaf of temporal lotteries.
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Thus, multiplying a temporal lottery by λ involves multiplying all (current and

future) consumption levels by λ, with no impact on the survival probabilities.

As an example, the element

(c1,m1) = (c1,
1
3(c2, d)⊕ 1

3(c′2, d)⊕ 1
3d) (3)

describes the case of an agent who is alive and consumes c1 in period 1 and then dies

with probability 1
3 or survives with probability π(m1) = 2

3 . If surviving in period 2,

she consumes either c2 or c′2 with equal probabilities, and then dies for sure at the

end of period 2 (formally mS
1 = 1

2(c2, d)⊕ 1
2(c′2, d)). In such a case, for any λ ∈ R+

one has:

λ(c1,m1) = (λc1,
1
3(λc2, d)⊕ 1

3(λc′2, d)⊕ 1
3d).

A graphical representation of the temporal lottery (3) is provided in Figure 1.

c1

d

1/3
c′2 d

11/3

c2 d
1

1/3

Figure 1: A graphical representation of the consumption lottery (c1,
1
3(c2, d) ⊕

1
3(c′2, d)⊕ 1

3d).

2.2 Well-behaved recursive preferences

In what follows, the agent is assumed to have preferences over the sets Dt, for

t ∈ {0, . . . , Tmax}, represented by utility functions Ut : Dt → Im(Ut) ⊂ R related

through the following recursion:
Ut(d) = ud,

Ut(ct,mt) = u(ct) + βφ−1(Emt [φ(Ut+1)]),
(4)
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where ud ∈ R is the utility associated with death, u : R+ → R is the period

utility of consumption, φ is an increasing function defined over the convex hull of

∪t∈{0,...,Tmax}Im(Ut) and β > 0 is the discount factor.4 Since DTmax = {d}, for a

given combination of ud,u, β and φ, there exists a unique sequence of functions Ut
that fulfills (4). Starting from t = Tmax and applying the recursion (4) backward

provides a direct construction of the utilities Ut.

The functions u and φ will be assumed to be twice continuously differentiable.

The function u governs intertemporal substitutability of consumption and will be

assumed to be concave. It will be said to be CRRA (for Constant Relative Risk

Aversion) if u(c) = c1−σ

1−σ + ul, with 0 < σ 6= 1, or u(c) = ln(c) + ul, for some constant

ul ∈ R. The function φ governs risk aversion, with greater concavity reflecting greater

risk aversion. As is well known, such recursive preferences may exhibit preference

for the timing of resolution of uncertainty. Precisely, it follows from Kreps and

Porteus (1978, Theorem 3) that preferences exhibit preference for early (resp. late)

resolution if the function x→ φ(u(c)+βφ−1(x)) is convex (resp. concave). Recursive

preferences also contrast with the standard additive framework for the possibility of

exhibiting intertemporal correlation aversion. A formal definition of intertemporal

correlation aversion can be found in Stanca (2021), who explains that a positive

intertemporal correlation aversion is obtained whenever the function φ is concave.

Using survival probabilities and the mixture operation of equation (1), recur-

sion (4) can be rewritten as Ut(ct,mt) = u(ct) + βφ−1(πt(mt)EmSt [φ(Ut+1)] + (1 −

πt(mt))φ(ud)). For greater legibility, we will simplify the notation in the remaining

and simply write:

Ut(ct,mt) = u(ct) + βφ−1 (πtE[φ(Ut+1)] + (1− πt)φ(ud)) , (5)

where πt implicitly stands for the probability π(mt) and E[·] for the expectation
4Note that there is no requirement that ud belongs to the image of the instantaneous utility

function u. In particular there does not need to exist a “death consumption equivalent” (that is a
consumption level cd such that u(cd) = ud). The only actual requirement is that φ is well-defined
on the convex hull of ∪tIm(Ut).
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operator EmSt [·].

Throughout the paper, we will assume that preferences fulfill two basic require-

ments, stipulating that greater consumption implies greater welfare and that at least

some lives are considered as worthwhile (i.e., better than death). Formally:

Definition 1 (Well-behaved preferences) Recursive preferences with uncertain

lifetime represented as in (4) are said to be well-behaved if:

1. (Monotonicity) The function (c0, c1) 7→ U1(c0,
1
2(c1, d) ⊕ 1

2d) is strictly in-

creasing.

2. (Non-Systematically Suicidal) For all t < Tmax, there exists (ct,m) ∈ Dt

such that Ut(ct,m) > ud.

The assumptions “Monotonicity” and “Non-Systematically Suicidal”, which we

view as basic requirements, allow specific normalization to be made, thus simplifying

the utility representation. Indeed:

Proposition 1 Recursive preferences with uncertain lifetime are well-behaved if and

only if they admit a utility representation Ut where:

• the period utility function u is strictly increasing, and not always negative (i.e.,

there exists c ∈ R+ such that u(c) > 0);

• we can set the normalization: ud = φ(ud) = 0.

The utility Ut can then be defined through the following recursion:
Ut(d) = 0,

Ut(ct,m) = u(ct) + βφ−1(πtE[φ(Ut+1)]),
(6)

with: φ(0) = 0 and u′ > 0.

For the remainder of the paper we will focus on well-behaved recursive preferences

represented as in (6), and explore the additional restrictions that would be related

to two additional assumptions, namely “Homotheticity” and “Ordinal Dominance”.
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2.3 Homotheticity and Ordinal Dominance

Preference homotheticity means that scaling all present and future consumption

levels by the same (positive) factor does not change the ranking of lotteries. This is

formalized in the following axiom:

Axiom 1 (Homotheticity) For any t ≥ 0, (ct,m), (c′t,m′) ∈ Dt and λ > 0 :

(Ut(ct,m) ≥ Ut(c′t,m′))⇔ (Ut(λct, λm) ≥ Ut(λc′t, λm′)) ,

Homotheticity is a very popular assumption as it tends to simplify optimization

problems. Indeed, under preference homotheticity, wealth has a basic scaling effect

and can be easily taken out of optimization problems. This is very convenient,

especially in settings where wealth is impacted by some random factors (as asset

returns, or random labor income) along the lifecycle.

Proposition 2 Well-behaved recursive preferences with uncertain lifetime fulfill

Homotheticity (Axiom 1) iff they admit a utility representation Ut fulfilling recursion

(6) in which:

• either u is CRRA, not always negative, and φ is linear,

• or u(c) = c1−σ

1−σ for some σ < 1, and φ(x) = xρ for some ρ > 0. The parameter ρ

governs risk aversion (with a larger ρ implying a lower degree of risk aversion),

while 1
σ
is the intertemporal elasticity of substitution

Formally, utility Ut can then be defined by Ut(d) = 0 and one of the following

recursions:

• Ut(ct,m) = u(ct) + βπtE[Ut+1] with u CRRA, not always negative;

• Ut(ct,m) = c1−σ
t

1−σ + β (πtE[Uρ
t+1])

1
ρ with σ < 1 and ρ > 0.
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The first case corresponds to the standard additive specification, which lacks

flexibility to study the role of risk aversion. The second case corresponds to Epstein-

Zin-Weil preferences, with an IES, 1
σ
, above one and a coefficient of relative risk

aversion, 1− ρ(1− σ), smaller than one. We will explain in Section 2.4 below why

the above results contrast with the messages found in CR and HPSA.

The other axiom we consider is Ordinal Dominance (“OD”, thereafter).

Axiom 2 (Ordinal Dominance) For all dates 0 ≤ t < Tmax, consumption levels

ct, c
′
t ∈ R+ and lotteries m1,m

′
1,m2,m

′
2 ∈M(Dt+1), if:


Ut(ct,m1) ≥ Ut(c′t,m′1),

Ut(ct,m2) ≥ Ut(c′t,m′2),

then:

Ut(ct,
1
2m1 ⊕

1
2m2) ≥ Ut(c′t,

1
2m

′
1 ⊕

1
2m

′
2).

OD is defined in very similar fashion in Chew and Epstein (1990), or in Bommier et al.

(2017) for temporal lotteries, and adapted here to the context of uncertain lifetime.

It states that if lottery (ct,m1) is preferred to (c′t,m′1) and (ct,m2) to (c′t,m′2), then

the mixture of the two most preferred should also be preferred to the mixture of the

two least preferred. OD is similar in spirit to a property of preference monotonicity

with respect to first-order stochastic dominance. Note that Axiom 2 only requires a

mixture with a 50%-50% probability. However, in our setup, preferences that fulfill

Axiom 2 will also fulfill a stronger version with arbitrary probabilities.

Proposition 3 Well-behaved recursive preferences with uncertain lifetime fulfill OD

(Axiom 2) if and only if they admit a utility representation Ut fulfilling recursion (6)

in which φ(x) = 1−e−kx
k

for some k 6= 0 or φ(x) = x and the function u is strictly

increasing and not always negative. Utility Ut is then defined by Ut(d) = 0 and the
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following recursion:

Ut(ct,m) =


u(ct)− β

k
ln
(
πtE

[
e−kUt+1

]
+ 1− πt

)
for k 6= 0,

u(ct) + βπtE[Ut+1] for k = 0.
(7)

Specification (7) is nothing other than an adaptation of risk-sensitive preferences

to a context of an uncertain lifetime. Indeed, Proposition 3 can be seen as an

extension of the representation result of Bommier et al. (2017) to uncertain horizons

but restricted to expected utility certainty equivalents, as in Kreps and Porteus

(1978).5 From Bommier and LeGrand (2014), we also know that the preferences

represented by recursion (7) verify a general notion of monotonicity with respect to

first-order stochastic dominance that encompasses our definition of OD. With such

preferences, if a consumption choice dominates (in the sense of first-order stochastic

dominance) another consumption choice, the first choice will also be preferred to the

second one. If one views taking decisions under uncertainty as playing a game against

Nature, OD is akin to the elimination of dominated strategies. It thus appears to be

a very natural assumption to model rational choice.

A consequence of Propositions 2 and 3 is that the only preferences fulfilling

Homotheticity and OD are the standard additive preferences. This is formulated in

the following corollary.

Corollary 1 Well-behaved recursive preferences with uncertain lifetime fulfill Ho-

motheticity (Axiom 1) and OD (Axiom 2) and if and only if they can be represented

as in (6) with a function u that is CRRA and not always negative, and φ(x) = x.

It follows from Corollary 1 that disentangling IES from risk aversion requires

Homotheticity or OD to be abandoned. On the one hand, giving up Homotheticity

and choosing OD leads to preferences that are overall well-behaved, even though
5The assumption of expected utility certainty equivalents is undoubtedly restrictive and has

been challenged by experimental evidence (Camerer and Ho, 1994). It seems however to us to be a
good starting point to explore implications of passing from risk-neutral certainty equivalents (as in
the standard additive framework) to risk-averse certainty equivalents.
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they come with a slight tractability burden. On the other hand, giving up OD and

choosing Homotheticity yields preferences that may end up opting for dominated

choices. Second, the IES is restricted to be above one, and risk aversion below one

which are both restrictive assumptions in contradiction with empirical evidence.

Finally, while the Homotheticity assumption is technically convenient, its empirical

relevance has regularly been challenged. Indeed, it is well-documented that rich

and poor people do not behave identically (in relative terms) when makings choices

such as savings and financial investments, for example, in direct contradiction with

the assumption of preference homotheticity (see for instance Dynan et al., 2004 for

saving behaviors and Calvet and Sodini, 2014 for portfolio compositions).

Overall, it seems to us that the overall balance is clearly in favor of OD and that

the cost of maintaining Homotheticity is too high. From Proposition 2, this leads to

opting for risk-sensitive preferences. We will explore in Section 2.7 the consequences

of working with such risk-sensitive preferences, but we first clarify the relationship

with the previous literature.

2.4 Working with EZW representations?

CR and HPSA, both published in the Review of Economic Studies, suggested

working with homothetic EZW recursive preferences to discuss value of life matters.

They claimed that these homothetic preferences disentangle risk aversion from

intertemporal elasticity of substitution and could accommodate positive values of life

without constraining the IES to be above one. Although these papers slightly differ

in their setting – since HPSA use continuous-time, while CR work in discrete time –

they share a number of common features. For our discussion, we will focus on the

discrete-time setting of CR although we will briefly discuss some specific aspects of

HPSA.6

EZW preferences are generally defined in infinite-horizon settings, where the
6A more extensive discussion of HPSA, using their continuous-time setting, can be found in the

working paper version, Bommier et al. (2020).
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utility Vt representing EZW preferences is defined through the following recursion:

Vt =
(

(1− β)c1−σ
t + β

(
E[V 1−γ

t+1 ]
) 1−σ

1−γ
) 1

1−σ
. (8)

The parameters γ and σ are positive numbers reflecting risk aversion and the inverse

of the intertemporal elasticity of substitution, respectively. The cases where σ or γ

equal 1 can be obtained by continuity from the above formula.

Accounting for the possibility of death can be made by using the domain described

in Section 2 and assuming a utility level to death that we denote by vd. Formally,

recursion (8) then becomes:

Vt =
(

(1− β)c1−σ
t + β

(
πtE[V 1−γ

t+1 ] + (1− πt)v1−γ
d

) 1−σ
1−γ
) 1

1−σ
. (9)

This expression, which is also the one used in CR (equation 2 in their paper), looks

different from that of equation (5). However, this is actually only a question of utility

normalization. For example, when σ 6= 1 and γ 6= 1, one can then set Ut = V 1−σ
t

(1−β)(1−σ)

and ud = v1−σ
d

(1−β)(1−σ) , representing the same preferences as Vt (remember that utility

representation is defined up to an increasing transformation), and obtain a utility

representation fulfilling the recursion (5). A similar transformation exists in the

other cases where γ or σ is equal to 1. Formally, representation (9) is equivalent to

representation (5) when using the correspondences of Table 1.

Parameters utility Ut utility u(c) death utility ud Risk function φ(x)

σ 6= 1 and γ 6= 1 V 1−σ
t

(1−β)(1−σ)
c1−σ

1−σ
v1−σ
d

(1−β)(1−σ)
1

1−γ ((1− σ)(1− β)x)
1−γ
1−σ

σ = 1 and γ 6= 1 ln(Vt)
1−β ln(c) ln(vd)

1−β
1

1−γ exp ((1− γ)(1− β)x)
σ 6= 1 and γ = 1 V 1−σ

t

(1−β)(1−σ)
c1−σ

1−σ
v1−σ
d

(1−β)(1−σ)
1

1−σ ln ((1− σ)(1− β)x)
σ = 1 and γ = 1 ln(V )

1−β ln(c) ln(vd)
1−β x

Table 1: Correspondences between representations (5) and (9).

Changing utility normalization is of course harmless and one may indifferently use

representation (5) or (9), with the appropriate correspondence, to discuss fundamental

preference properties. In particular, it directly follows from Lemmas 1 and 2, in
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Appendix A.1, that when vd > 0, the recursion (9) represents well-behaved preferences

in the sense of Definition 1 (i.e., preferences that are monotone and NSS). Such

specifications are for instance used in Pashchenko and Porapakkarm (2022). They are

not homothetic (unless σ = γ, providing the additive model) and do not fulfill OD

(unless σ = γ or σ = 1).7 Imposing Homotheticity (together with Monotonicity and

NSS) is only possible if γ = σ (additive case) or if σ < 1 and γ < 1 and vd = 0. This

latter case imposes stringent restrictions on the IES, 1
σ
, assumed to be above one,

and risk aversion, assumed to be below one. We thus need to clarify why our message

strongly contrasts with those of CR and HPSA, who both claim that homothetic

EZW specifications with γ < 1 are well-behaved even when σ ≥ 1. In the case of CR,

we will see in Section 2.5 that this is due to a mathematical error in their analysis.

Regarding HPSA, we will explain in Section 2.6 that this relates to a restriction

on mortality rates, assumed to be bounded from above in a way that rules out the

application to any realistic mortality pattern.

2.5 Mathematical error in Córdoba and Ripoll (2017)

CR claim that an EZW specification featuring γ < 1, σ ≥ 1 and vd = 0 could

unproblematically accommodate positive value of life and homotheticity. When

setting vd = 0 and assuming γ < 1 and σ > 1, equation (9) becomes:
Vt =

(
(1− β)c1−σ

t + βπ
1−σ
1−γ
t E[V 1−γ

t+1 ]
1−σ
1−γ

) 1
1−σ

if σ > 1,

Vt = c1−β
t π

β
1−γ
t E[V 1−γ

t+1 ]
β

1−γ if σ = 1.
(10)

However, we can infer from (10) that, in both cases, we have the following chain of

implications:

VTmax = 0⇒ VTmax−1 = 0⇒ VTmax−2 = 0⇒ · · · ⇒ V0 = 0.
7When the IES is equal to 1 (σ = 1), the non-homothetic EZW specification is also a risk-sensitive

one, as is well-know from Tallarini (2000).
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Such models are thus degenerate in the sense that they imply a zero utility at all

dates, independently of consumption choices: Vt = 0 for all t and all ct.8

CR nevertheless used recursion (10) to derive first-order conditions (FOC here-

after) in optimization problems without checking whether utility is well-defined and

non-degenerate. Most of their analysis relies on such first-order conditions. Section

5 of CR seems to provide a justification. In that section, CR consider the cases

where vd > 0 (which, as we explained, correspond to well-behaved models) and then

discuss the limit where vd → 0. They conclude that the limit of such well-defined

models leads to the same results as direct derivations of FOC from recursion (10).

This suggests that the degeneracy issue mentioned above may be simply seen as a

purely technical aspect that can be disregarded. The problem is that CR made an

unfortunate mistake when handling the limit vd → 0. In fact, when σ > 1, such a

limit involves an indeterminate form and is not adequately handled in CR. When this

limit is computed correctly, one obtains FOC that are different from those derived

from (10) and that have radically different predictions for agents’ behavior.

To make the issue fully explicit, let us focus on the case where σ > 1 and mortality

is the only source of uncertainty – such that the expectation symbol in (9) is no

longer needed. Straightforward calculations provide the following marginal rate of

substitution between consumption in period t+ 1 and period t:

∂Vt
∂ct+1
∂Vt
∂ct

= βπt

(
ct+1

ct

)−σ πt + (1− πt)
(
vd
Vt+1

)1−γ


γ−σ
1−γ

. (11)

The error in CR involves assuming that when vd → 0, then vd
Vt+1
→ 0 and therefore

8In an early working paper version (Bommier et al., 2020) we show that this result extends to
the case where there is no maximal life duration, but where survival probabilities converge to zero
as age tends towards infinity.
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that:9
∂Vt
∂ct+1
∂Vt
∂ct

→ βπ
1−σ
1−γ
t

(
ct+1

ct

)−σ
. (12)

The expression βπ
1−σ
1−γ
t

(
ct+1
ct

)−σ
mentioned above is also the marginal rate of sub-

stitution that is computed from recursion (10) when ignoring issues related to

indeterminate form and the one used by CR in their consumption-saving problems.

The computation of the limit in CR is mistaken because when vd → 0, we also

have Vt+1 → 0. Remember indeed that, as can be seen from recursion (9), Vt+1

depends on vd. The limit limvd→0
vd
Vt+1

is thus of the indeterminate form 0
0 (and in

fact different from zero). In order to compute the limit correctly, one may rewrite

recursion (9) as follows:

Vt
vd

=
(1− β)

(
ct
vd

)1−σ
+ β

(
πt

(
Vt+1

vd

)1−γ
+ 1− πt

) 1−σ
1−γ


1
1−σ

. (13)

As σ > 1 implies that limvd→0
(
ct
vd

)1−σ
= 0, we deduce that limvd→0

Vt
vd

= χt where

(χt)t≥0 is defined by πTmax = 0 and

χt = β
1

1−σ
(
πtχ

1−γ
t+1 + 1− πt

) 1
1−γ for t = 0, . . . , Tmax − 1. (14)

We therefore deduce from (11) that when vd → 0 ::

∂Vt
∂ct+1
∂Vt
∂ct

→ βπt
(
πt + (1− πt)χγ−1

t+1

) γ−σ
1−γ

(
ct+1

ct

)−σ
, (15)

which differ from the limit (12) computed by CR.

Considering the correct limit shown in equation (15), or the incorrect one written

in equation (12), has a major impact on model predictions. To illustrate this, consider
9For precise referencing, the error in CR occurs at the beginning of their Section 5.1 (page 1503)

where they write (with their notation): “The Euler equation in this case reads

cσt+1 = β(1 + r)
[
π + (1− π) (V /Vt+1)1−γ

] γ−σ
1−γ

cσt

which reduces to (23) [that is cσt+1 = β(1 + r)π
γ−σ
1−γ cσt ] when V = 0”. The assertion is false, as we

explain in what follows (with the V of CR corresponding to vd in our contribution).
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for example a standard lifecycle consumption-saving problem where an agent starts

with some initial wealth w0, and decides in each period how much to consume and

how much to save. Assuming that the return on savings is 1 + r, the agent program

can be expressed as follows:

Vt(wt) = max
ct,wt+1

(
(1− β)c1−σ

t + β
(
πt (Vt+1(wt+1))1−γ + (1− πt)v1−γ

d

) 1−σ
1−γ
) 1

1−σ
, (16)

s.t. wt = ct + 1
1 + r

wt+1. (17)

The first-order condition of this problem is that the marginal rate of substitution
∂Vt
∂ct+1

/∂Vt
∂ct

between ct+1 and ct should equal 1
1+r . The model predictions regarding

consumption-saving behavior when vd → 0 will thus depend on the limit for the

marginal rate of substitution.

When choosing the wrong limit of equation (12), as in CR, the FOC would yield

(when vd → 0):
ct+1

ct
→
(
β(1 + r)π

1−σ
1−γ
t

) 1
σ

, (18)

which would mean that if σ > 1 > γ, mortality would reduce agents’ impatience

instead of contributing to it.10 This would suggest that consumption and survival

would be substitutes, which is hardly understandable in a setting where there is no

bequest (and thus no utility for consumption after death).

Considering, instead, the correct limit of equation (15) one obtains, when vd → 0:

ct+1

ct
→
(
β(1 + r)πt

(
πt + (1− πt)χγ−1

t+1

) γ−σ
1−γ

) 1
σ

, (19)

which offers drastically different implications on the agent’s consumption-saving

behavior. To illustrate these differences in consumption-saving behavior, we compute

consumption profiles implied by either (18) or (19) using benchmark parameters and

realistic mortality profiles. The interest rate is assumed to be r = 4%. Preference

parameters are set to standard values (and have to respect γ < 1): β = 0.98, σ = 2.0,
10In the absence of annuities, survival probabilities have no impact on the budget constraint. The

impact of survival probabilities on the optimal consumption profile is then a pure impatience effect.
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and γ = 0.5. Mortality rates are those of the total US population in 2018, as reported

in the Human Mortality Database (HMD). The first two consumption paths plotted

Figure 2: Consumption profiles implied by the additive model, Córdoba and Ripoll’s
solution (FOC (18)) and the limit EZW model (FOC (19)).

in Figure 2 correspond to those obtained when using the FOC (18), for the so-called

“homothetic EZW model”, and when using the FOC (19) derived from the (correct)

limit of EZW model where vd → 0. To provide a comparison, we also plot the

consumption path implied by the standard additive expected utility model for the

same parameter values for β and σ (the FOC is given by (19) with γ = σ). Lifetime

wealth is normalized such that the yearly consumption at age 40 for the additive

agent is equal to $ 45,000. This normalization is of little importance, since preferences

are homothetic. The homothetic EZW profile exhibits a consumption level that

remains extremely low until age 100, but then sky-rockets after that. This is very

different from the consumption paths obtained when using the correct FOC (i.e., the

limit model) or the additive specification – both being relatively similar. Note that

the y-axis is truncated at $ 50,000 for greater legibility but under the homothetic

EZW model, consumption in fact exceeds $ 100,000 at age 100 and almost reaches
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$ 15,000,000 at age 110. The predictions of the additive and limit EZW model does

not exhibit such extreme behaviors.

Note in addition, that in the limit where vd → 0, the marginal rate of substitution

between survival probabilities and consumption, ∂Vt
∂πt
/∂Vt
∂ct

tends towards ∞. Thus,

even though this limit model – when handled properly – could avoid the counterfactual

predictions of CR in terms of consumption smoothing, it would remain inappropriate

to discuss value of life matters.11

2.6 Domain restrictions in Hugonnier et al. (2013)

One way to get around the difficulties mentioned above, in line with what HPSA

do in continuous-time, is to assume that survival probabilities remain “large” when

age tends towards infinity. Formally, when σ > 1, γ < 1, πt > β
1−γ
σ−1 for all t ≥ 0 and

consumption ct remains bounded away from zero, the recursion:

Vt =
(

(1− β)c1−σ
t + βπ

1−σ
1−γ
t V 1−σ

t+1

) 1
1−σ

admits several solutions, one being Vt = 0 for all t, and the other solutions being

given by:

Vt =
[
β−t

(
Πt−1
j=0πj

)σ−1
1−γ K +

∞∑
s=t

βs−t
(
Πs−1
j=tπj

) 1−σ
1−γ c1−σ

s

] 1
1−σ

, (20)

for some constant K ≥ 0. Mathematically speaking, there is no fundamental problem

in using equation (20) for economic analyses. This is basically the route followed by

HPSA, in their continuous-time setting. However the economic relevance of imposing

πt > β
1−γ
σ−1 is questionable. Indeed, it requires that life expectancy never goes below

1

1−β
1−γ
σ−1

. For example, with σ = 2, γ = 0.5 and β = 0.97, life expectancy should never

go below 66 years, whatever the age of the agent. This is of course in contradiction
11CR “avoid” the counterfactual predictions of Figure 2 by introducing some age specific health

profile whose purpose is to counteract the “cumbersome” variations of the discount factor that arise
when using the mistaken limit (12). Besides being ad hoc, this comes at the cost of assuming that
health reduces (and not increases) utility.
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with what occurs in the real world, where life-expectancy typically drops below 66

years when people reach age 14 according to the HMD 2018 population mortality

data. Thus the domain restriction, which is presented as a “technical assumption” in

HPSA, helps to avoid degeneracy issues, but is a major shortcoming as it precludes

all applications to realistic mortality patterns.12

2.7 Risk-sensitive preferences

The risk-sensitive specification is the one obtained when φ : x 7→ 1−e−kx
k

, providing

the recursion shown in (7). Such a specification was initially introduced by Hansen

and Sargent (1995) in an infinite-horizon setting and later adapted to the problem of

intertemporal choice under uncertain lifespan in two working papers (Bommier, 2014

and Bommier et al., 2020). As shown in Proposition 3, this is, in our setting, the

only class of recursive preferences that fulfill OD.13 Risk-sensitive preferences exhibit

preference for early resolution of uncertainty when k > 0 and β < 1 or k < 0 and

β > 1 and for late resolution of uncertainty when k < 0 and β < 1 or when k > 0

and β > 1. Indifference for the timing of resolution of uncertainty occurs when k = 0

or when β = 1. In those cases, risk-sensitive preferences actually yield expected

utility preferences, the standard additive specification being obtained when k = 0

and the multiplicative specification of Bommier (2013) when k 6= 0 and β = 1. As

demonstrated in Stanca (2021, Theorem 1), risk-sensitive preferences exhibit positive

intertemporal correlation aversion if k > 0 and negative intertemporal correlation

aversion if k < 0, independently of the value of β. The experimental evidence on

intertemporal correlation aversion (see Andersen et al., 2018 and Harrison et al.,

2022 for recent evidence using an online experiment in the US during the Covid-19

pandemic) would then support the assumption of a positive k.
12In HPSA the restriction is formulated in equation (24) of their first theorem.
13The “multiplicative preferences” axiomatized in Bommier (2013) can also be viewed as a

particular case of risk-sensitive preferences where β is set to 1. Such preferences can match empirical
consumption profiles and have been used in Bommier and Villeneuve (2012) and Bommier and
LeGrand (2014) to study the value of life and the demand for annuities, respectively.
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The risk-sensitive specification offers a theoretically appealing framework. OD

guarantees that dominated choices are ruled out and offers an intuitive interpretation

for the impact of risk aversion. Indeed, risk aversion can then be understood in terms

of how bad states are weighted compared to good states when making choice under

uncertainty. We illustrate these aspects by deriving results on the discount rate and

the value of mortality risk reduction, as well as by providing a numerical example.

In the remainder of the section, we assume that the only risk is the mortality risk.

As a consequence, the expectation symbol in (7) is no longer needed.

2.7.1 Discount factor

The marginal rate of substitution between consumption in times t+ 1 and t is given

by the following expression:
∂Vt
∂ct+1
∂Vt
∂ct

= cσt
cσt+1

β
πt

πt + (1− πt)ekVt+1
,

which therefore implies a discount factor equal to β πt
πt+(1−πt)ekVt+1 . This discount

factor simplifies to βπt in the standard additive model (k = 0) but is otherwise

endogenous and has the following characteristics.

Proposition 4 The discount factor β πt
πt+(1−πt)ekVt+1 is such that:

1. it increases with πt;

2. it decreases with k (i.e. higher risk aversion makes people become more impa-

tient) if c1−σ
t

1−σ + ul > 0 for all t;

3. it decreases with continuation utility if k > 0 (and thus with future consumption,

and future survival probabilities if c1−σ
t

1−σ + ul > 0 for all t);

The proof can be found in Appendix A.4.

The first point simply states that the higher the mortality risk, the more impatient

the agent. This effect is already present in the additive model and extends to the
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risk-sensitive framework.14 The second point of Proposition 4 means that more risk

averse agents are more impatient, under the condition that life is worth living (in

Proposition 5, we show that positive instantaneous utilities imply a positive value of

mortality risk reduction). This condition guarantees that in any period the agent sees

the possibility of dying at the end of the period as a an adverse outcome, compared

to the case where she remains alive. The more risk averse the agent, the less she

puts weight on the good state (the one in which she remains alive), which translates

into a lower discount rate. Finally, the third point states that when the risk aversion

coefficient k is positive and the higher the continuation utility, the more impatient

the agent will be. Indeed, when the agent anticipates a bright future, the case where

she may die at the end of period t looks much worse in terms of welfare than the

case where she may survive. One way to reduce this gap in welfare, and thus reduce

risk on lifetime utility, involves consuming more today (and less in the future). The

willingness to achieve such a risk reduction is naturally magnified by risk aversion.

This translates into a lower discount rate. Note that the last two points are not

present in the additive case: with additively separable preferences, there is no effect

of k by construction and no effect of continuation utility.

2.7.2 Value of mortality risk reduction

The value of mortality risk reduction (MRR) is defined as the marginal rate of sub-

stitution between survival and consumption.15 It quantifies how much consumption

in period t the agent is willing to give to diminish her mortality risk from period t

to period t+ 1, keeping everything else unchanged. Formally, we have:

MRRt =
∂Vt
∂πt
∂Vt
∂ct

. (21)

14This contrasts with the messages of CR and HPSA who explain that mortality contributes to
impatience (as in our case) when the IES is above one, but reduces impatience when the IES is
below one. This difference is directly related to the issues discussed in Sections 2.5 and 2.6.

15In the absence of annuity and other mortality-related savings, the value of mortality risk
reduction can identically be defined as the marginal rate of substitution between survival and
wealth.
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Another standard denomination for this marginal rate of substitution is the value

of a statistical life (VSL). Due to misunderstandings related to the “Value of Life”

denomination, there is a debate about the best terminology to use.16 Independently

of the denomination, this concept is extensively used in cost-benefit analysis for

public policy design.

In the risk-sensitive framework, the value of mortality risk reduction (21) has the

following expression if k 6= 0:

MRRt = β

k
cσt

1− e−kVt+1

πte−kVt+1 + 1− πt
. (22)

This expression reduces to MRRt = βzσt Vt+1 in the additive model (k = 0), as is

found in papers working with additively separable preferences (Hall et al., 2020 for a

recent example). The following proposition summarizes the properties of the value

of mortality risk reduction in the risk-sensitive model.

Proposition 5 The value of mortality risk reduction of equation (22) is such that:

1. it is positive at all dates if c1−σ
t

1−σ + ul > 0 for all t;

2. it increases with continuation utility (and thus with future consumption, and

future survival probabilities if c1−σ
t

1−σ + ul > 0 for all t);

3. it increases with πt if k > 0;

4. the relationship with k is ambiguous in general (even when k > 0 and c1−σ
t

1−σ +ul >

0 for all t).

The proof can be found in Appendix A.5. The first point of Proposition 5 states

that having positive instantaneous utilities at all dates is a sufficient condition for

having a positive value of mortality risk reduction. The positivity condition on

the instantaneous utilities should be interpreted as being alive and consuming ct is
16See https://www.epa.gov/environmental-economics/mortality-risk-valuation for a

discussion.
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preferred to being dead, and results from our normalization ud = 0.17 A positive

value of mortality risk reduction means that the agent is willing to pay to reduce her

mortality probability. A negative value would mean that the agent is willing to pay

to increase her mortality probability. Such a feature is systematically obtained with

homothetic EZW specifications with an IES below one (σ > 1) and risk aversion

above one (γ > 1), which explains why they are ruled out in the representation result

of Proposition 2.

The second point of the proposition states that the value of mortality risk

reduction increases with the continuation utility (in case of survival). The higher

the “payoff” in case of survival, the more the agent is willing to pay for enjoying it.

This effect is already present in the additive model. This also means that the value

of mortality risk reduction increases with future consumption and future survival

probabilities (if consumption is high enough to make life better than death).

In order to understand the third and fourth points, which are absent with the

additive specification, one has to realize that making investments today to lower

tomorrow’s mortality is not a plain risk reduction. Of course such investments lower

the risk of dying (which is a risk reduction), but they also imply taking the risk of

dying tomorrow after having made sacrifices today (which is thus an increase in risk).

This latter aspect is more a concern when the risk of dying tomorrow is high (that

is when πt is low). We then naturally find that the lower πt, the lower the value of

mortality risk reduction – which corresponds to the second point of Proposition 5.

Also, the fact that making investments to lower mortality involves reducing some

risk and generating others is the reason why risk aversion has an ambiguous impact

(last point of Proposition 5). This finding and the explanation we provide is fully in

line with well-known results in the literature on optimal prevention stating that risk

aversion may fail to enhance optimal prevention when the probability of having an

accident is not small (see e.g. Dionne and Eeckhoudt, 1985, or Jullien et al., 1999).
17Without this normalization, the condition would have been that instantaneous utilities need to

be greater than (1− β)ud.
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2.7.3 A numerical illustration

We complement our theoretical results with simulations showing how risk aversion

impacts life-cycle consumption profile and the value of mortality risk reduction when

using risk-sensitive preferences. For these simulations, we consider a CRRA utility

function of the form u(c) = c1−σ

1−σ + ul, and set ul such that the value of mortality

risk reduction at age 40 is $ 10 million in the additive model.18 The rest of the

Figure 3: Consumption profiles implied by the additive and risk-sensitive models.

calibration is identical to that in Section 2.5 for the additive model. For risk-sensitive

preferences, we use the same calibration as in the additive model and furthermore

set k to the value of Bommier et al. (2020) calibrated using annuity data. In order

to highlight the role of risk aversion, we contrast the results obtained with a positive

k (referred to as the “risk-sensitive model”) to those obtained for k = 0 (referred to

as the “additive model”).

Figure 3 reports the consumption paths for both specifications. Since ul has no

impact on consumption choices in the additive model, the additive-model consumption
18This is in the range of estimates for the US (in 2021). Viscusi (2021), for example, suggests a

value of mortality risk reduction of about $ 11 million.
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profile in Figure 3 is the same as in Figure 2. Both the additive and the risk-sensitive

models generate plausible hump-shaped consumption paths. The predictions diverge

between the two models, because of the role of risk aversion, which makes the agent

more impatient – as stated in the second point of Proposition 4. This is illustrated

in Figure 3 by the consumption levels that are larger at younger ages (and lower at

older ages) in the risk-sensitive model than in the additive model.

Figure 4: Profiles of value of mortality risk reduction implied by the additive and
risk-sensitive models.

We plot in Figure 4 the age-profiles for the value of mortality risk reduction in the

additive and risk-sensitive models. We recall that the additive model is calibrated

such that the value of mortality risk reduction is $ 10 million at age 40 and that

the gap between the two profiles if due to an increase in risk aversion. As stated

in Proposition 5, the role of risk aversion is ambiguous. A higher risk aversion

contributes to a higher value of mortality risk reduction at younger ages when the

mortality risk is low, while it implies a lower value at older ages when the risk is

high, in line with the intuition provided in Section 2.7.2.
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For both models, the value of mortality reduction tends to decrease with age,

reflecting the fact that older people have a shorter life expectancy, thus a smaller

stake at play when considering their mortality (the value of mortality risk reduction

also depends on the marginal utility of current consumption, which explains why it

slightly increases with age at the beginning of the life cycle with the additive model).

An important aspect is that the value of mortality risk reduction decreases more

rapidly with age with the risk-sensitive specification than with the additive one. The

underlying reason is that risk aversion tends to magnify the willingness to avoid

particularly dramatic outcomes (such as death at a young age), as compared to the

willingness to avoid less adverse outcomes (such as death at an advanced age). We

will see that this point turns out to be essential in understanding how risk aversion

may alter policy recommendations in the context of epidemic management.

3 Application to epidemics

We now illustrate how risk-sensitive preferences provide new insights on the trade-off

between consumption and mortality in the context of optimal epidemic mitigation.

We build on the framework of Hall et al. (2020) and apply it to the Covid-19 (Section

3.2 ) and 1918 influenza (Section 3.3) pandemics. One reason to focus on these two

real-world cases is that they feature highly contrasted age-specific mortality rates.

We start by presenting the setup.

3.1 General case

We consider a population of size normalized to 1, initially containing agents of

different ages t in proportions (ωt)t, with ωt ∈ [0, 1] and ∑t ωt = 1. Agents of age t

are endowed with risk-sensitive preferences represented by utility function Vt defined

in recursion (7). We assume that a pandemic (either Covid-19 or 1918 influenza

in our applications) implies an age-specific impact on survival probabilities, which

diminish from πt to πt − δt for one year. A benevolent planner seeks to determine
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which share α of current consumption agents are willing to give up in exchange

for being rid of the excess mortality risk. We further simplify the framework by

assuming that consumption, c, is constant throughout ages and that agents’ discount

factor β is 1. Let λ = 1− α and denote by Vt(λ, δ) the current utility of an agent of

age t whose current consumption is λc (instead of c) and her next-period survival

πt − δ. One has:

Vt(λ, δ) = u(λc)− 1
k

log((πt − δ)e−kVt+1(1,0) + 1− πt + δ), (23)

where next-period utility is Vt+1(1, 0) since the pandemic effects are assumed to last

for one year only. The criterion of the benevolent planner is:

W (λ, (δt)t) =
∑
t

ωtVt(λ, δt)

= u(λc)− 1
k

∑
t

ωt log((πt − δt)e−kVt+1(1,0) + 1− πt + δt). (24)

The planner seeks to determine how much of the current consumption c can be

reduced so as to offset in terms of welfare the extra mortality risk, which corresponds

formally to the equivalence W (1, (δt)t) = W (λ, 0), or using (23) and (24) to:

u(c)− u(λc) = 1
k

∑
t

ωt log
(

1 + δt
1− e−kVt+1(1,0)

πte−kVt+1(1,0) + 1− πt

)
. (25)

If we assume that δt and λ are both small, we obtain:

α = 1− λ ≈ 1
cu′(c)

∑
t

δtωt
1
k

1− e−kVt+1(1,0)

πte−kVt+1(1,0) + 1− πt
, (26)

where the latter relationship can be shown to fall back on the expression in Hall et al.

(2020, equation (4)) when taking the limit k → 0.

To interpret further equation (26), we can conduct a first-order Taylor expansion

in k of expression (25) for α. We obtain the following approximation for small k:

α ≈ v
∑
t

δtωtEt+1[T̃ ]︸ ︷︷ ︸
additive term

+vku(c)
2

(∑
t

δtωt

(
(2πt − 1)Et+1[T̃ ]2︸ ︷︷ ︸

gain proportional to Et+1[T̃ ]2

− Vt+1[T̃ ]︸ ︷︷ ︸
loss due to risk

))
, (27)
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where v = u(c)
cu′(c) is, as in Hall et al. (2020), the value of a year of life relative to

consumption, Et+1[T̃ ] the life expectancy at age t + 1 and Vt+1[T̃ ] the variance of

lifespans at age t+ 1. The expression (27) consists of three terms. The first term

(“additive term”) is the same as in Hall et al. (2020), which is consistent with the

fact that the risk-sensitive model reduces to the additive model when k = 0. The

second term (“gain”) is positive when πt > 0.5, which is the case for all ages except

for very old ages. For instance, in the HMD data we use, it is only at ages greater

than 105 that πt < 0.5. This term is proportional to the square of life expectancy

and reflects that agents with a long life expectancy are willing to pay more to be rid

of the additional mortality risk that the epidemic generates (provided their survival

probability is high enough). The last term is proportional to the variance of lifespans

at age t+ 1: the more uncertain the lifespan, the less the agent is willing to pay to

avoid the extra mortality risk. We expect the sum of the two last terms, scaled by

the risk aversion parameter k, to be positive at younger ages, and negative at older

ages. The overall impact of risk aversion is thus not clear-cut and may increase or

decrease the value obtained with the additive model, depending on how the epidemic

affects younger people as opposed to older people.19

3.2 The case of Covid-19

We now apply the computations of Section 3.1 to the Covid-19 pandemic. As in Hall

et al. (2020), we assume that u is CRRA, with a constant inverse IES set to σ = 2.

We also use their calibration for the consumption level c, set to $ 45, 000, and for

the value of life at age 40, set to $ 10.4m and used to determine ul. The population

shares (ωt)t are also those of the US total population in 2018, as reported by the US

Census Bureau.20

19The fact that the effect is positive only at young ages when the survival probability is large
enough is in line with our result of Proposition 5 and its illustration in Section 2.7.3. As already
mentioned, this is consistent with the literature on optimal prevention (Dionne and Eeckhoudt,
1985, or Jullien et al., 1999).

20https://data.census.gov/cedsci/table?q=population&tid=ACSDP1Y2018.DP05.
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For the Covid-19 age-specific mortality profile (δt)t, Hall et al. (2020) used the

data of Ferguson et al. (2020) that was the only reliable source of data available

when they wrote their paper. However, these data were estimated very early in the

pandemic (March 2020), and we take advantage of more recent estimates that cover

a broader set of observations. The data we use are taken from the meta-estimation

of Levin et al. (2020), who report an exponential relationship between age and the

infection fatality ratio (IFR), which is the proportion of people infected who die from

the disease:

log10 IFRt = −3.27 + 0.0524× t, (28)

where IFRt is the IFR at age t and log10 is the log in base 10. This implies that

the IFR increases by 12.82% every year of age – which is slightly higher than the

11.2% reported in Hall et al. (2020) based on Ferguson et al. (2020) estimates.

Regarding the average mortality rate, we use the value of 0.69% which results from

the age-specific IFR profile estimated by Levin et al. (2020) applied to the 2018 US

population structure and a risk of contracting the Covid-19 of 65%, identical for all

ages by assumption. This implies that we have: δt = 65% × IFRt. The infection

probability of 65% corresponds to a reproductive number R0 of 2.87, which is the

mid-point estimate in the meta-review of Billah et al. (2020).

Finally, the survival probabilities (πt)t are chosen to be those of the US total

population in 2018, as reported in the Human Mortality Database.21 For the risk-

sensitive model, we set the value of k = 0.216 based on Bommier and LeGrand

(2014), who calibrated a risk-sensitive model with β = 1 to match annuity holdings.

We report in Table 2 the share α of consumption agents are willing to relinquish

in order to be rid of the excess mortality risk of Covid-19. We do so for both the

risk-sensitive and additive models and for each report the values α obtained from the

linear approximation (equation (26)) and from the exact formula (equation (25)).22

21https://www.mortality.org/cgi-bin/hmd/country.php?cntr=USA&level=1. Hall et al.
(2020) use mortality data from the Social Security Administration, which differ very slightly
from HMD data.

22The corresponding expressions for the additive model are simply obtained by taking the limit
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When using the additive model, agents are willing to give up 50.4% of their current

consumption to avoid Covid-19 mortality risk according to the linear approximation,

while this drop in consumption reduces to 33.5% according to the exact formula,

which takes into account non-linearities.

When using the risk-sensitive model, the share α of consumption to relinquish

is smaller than in the additive setup. With the exact formula, the acceptable drop

in consumption equals 28.3% with risk-sensitive preferences, compared to 33.5% for

additive ones. Taking risk aversion into account therefore diminishes the share of

consumption agents are willing to relinquish, by 5 percentage points approximately

(for the exact formula).

Computational method Additive model Risk-Sensitive
model

Linear approximation (26) 50.4 39.6
Exact formula (25) 33.5 28.3

Table 2: The share α of consumption (in %) to relinquish to be rid of Covid-19
mortality risk. Computations are based on Levin et al. (2020) data and an average
mortality rate of 0.69%

The differences between the results implied by the additive and risk-sensitive

models are a direct implication of the role of risk aversion which leads to putting

greater weight on more adverse consequences. To illustrate this, we plot in Figure

5 the parameters (αt)t of equation (26) as a function of age in both the additive

and the risk-sensitive models. Each αt represents the drop in consumption that

a population only made of agents with age t is willing to accept to be rid of an

extra mortality risk of 0.1%.23 It can be seen that the (αt)t are decreasing with age

for both models, showing that, when assuming a flat consumption profile, younger

k → 0 in (25) and (26).
23Note that for a mortality risk higher than 0.1%, the value of αt for some ages t could be higher

than 100%. This simply reflects the limitation of the linear approximation of equation (26) that is
only valid for low mortality risks. As can be seen in Table 2, the linear approximation is not very
precise in the case of Covid-19 either for the additive or the risk-sensitive models.
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agents are more willing to give up consumption than older ones for a given reduction

in mortality risk. This reflects the fact that dying young is a more adverse event

Figure 5: Profiles of the (αt) parameters as a function of age.

than dying old. However, the difference between additive and risk-sensitive models

is that, due to greater risk aversion, short lives are comparatively a greater source

of concern in the risk-sensitive model than in the additive model, which makes

young agents willing to pay more with risk-sensitive preferences than with additive

ones. The opposite holds for older agents. The calibration being performed on the

willingness-to-pay for mortality risk reduction at age 40, the differences between

models for age groups 35-40 and 40-45 are very modest. Since Covid-19 mainly

affects older people, this explains why overall, the acceptable drop in consumption is

smaller with the risk-sensitive model than with the additive one.
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3.3 The case of 1918 influenza

We contrast the results for Covid-19 with those obtained when considering the 1918

influenza, a disease that heavily affected young people. We use the mortality data

provided in Taubenberger and Morens (2006) based on Collins (1931). The age-profile

of mortality risk is plotted in Figure 6.24 As can be seen, the age mortality profile

has a “W-shape”, where young adults are also strongly affected by the disease. This

shape is peculiar to the 1918 influenza, since regular influenza epidemics exhibit a

U-shape mortality profile.

Figure 6: Age-profile of the mortality risk (δt) for 1918 influenza.

We report in Table 3 the share of consumption agents are willing to relinquish

to be rid of the 1918 influenza mortality risk. This corresponds to the quantity α

computed using the exact formula (26). We do not report the values computed with

the linear approximation here. Compared to Table 2, we only change the profile (δt),

keeping the rest of the calibration unchanged. The value in Table 3 should therefore
24We directly use here the extra mortality risk implied by 1918 influenza. In the case of Covid-19,

such data is not yet available and, as explained in Section 3.2, we estimate it based on the Infection
Fatality Ratio (probability of dying once infected) and an infection probability of 65%.
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Mortality pattern Additive model Risk-Sensitive
model

1918 influenza 56.9 60.9
Rescaled 1918

influenza 64.8 68.4

Table 3: The share α of consumption (in %) to relinquish to be rid of 1918 influenza
mortality risk, computed using the exact formula (26).

be interpreted as the willingness-to-pay to be rid of 1918 influenza mortality risk

in the US of 2018 (and not of 1918). To ease the comparison with Covid-19, we

consider two mortality patterns: the actual 1918 influenza one, corresponding to the

mortality data of Figure 6 and a rescaled version that would yield the same average

mortality rate as Covid-19. This “rescaled 1918 influenza scenario” can thus be seen

as a fictive pandemic that would feature the same average mortality as Covid-19 but

with the age-specific profile of the 1918 influenza.25

Unsurprisingly, the values of α for both models are higher for the 1918 influenza

than for Covid-19, even when controlling for average mortality. This is due to the

fact that younger people suffered comparatively much more from the 1918 influenza

that from Covid-19. Furthermore, compared to Table 2, the relative outcomes of the

additive and risk-sensitive models are reversed. With Covid-19 affecting older people

disproportionately, the additive model tended to overestimate α compared to the

risk-sensitive model. With the 1918 influenza also strongly affecting younger people,

this is the opposite and the additive model tends to underestimate the value of α

compared to the risk-sensitive model.

4 Conclusion

Finding the appropriate policy in the case of a health crisis typically amounts to

making trade-offs between mortality and consumption (or wealth). The recent Covid-
25The average mortality is actually slightly smaller for the 1918 influenza pandemic (about 0.5%)

than for the Covid-19 (about 0.69%).
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19 crisis has shown how sensitive such issues can be. Risk-reduction measures, such

as lock-downs, have been strongly criticized both for being excessive and for not

being severe enough. According to the micro-economic tradition, the choice of the

social planner should be based on revealed preferences for mortality risk reduction.

The difficulty, however, is that estimates on the willingness-to-pay for mortality

risk reduction are most often based on samples of workers who, by nature, are

not representative of the older and younger populations. Economists are then left

with no other option than to make the best extrapolation they can. The standard

approach involves using an additive model, which constrains risk aversion to be equal

to the inverse of the IES. Such a property is anything but neutral as it drives how

particularly negative consequences are weighted compared to not so adverse ones.

The most popular way to disentangle risk aversion and intertemporal substi-

tutability consists of using recursive preferences as initially suggested by Kreps and

Porteus (1978) and Epstein and Zin (1989). In the current paper, we have shown

how this line of research can contribute to the value-of-life literature. Our message is

twofold. First, we highlight that the homothetic EZW specifications are unappealing

in the context of mortality risk, constraining in particular the IES to be above one

and risk aversion to be below one. The gain in flexibility resulting from the recursive

approach entails significant restrictions on key utility parameters. Second, we show

that the risk-sensitive preferences initially introduced by Hansen and Sargent (1995),

and shown to be the only class of monotone recursive preferences that disentangles

risk aversion and IES, can provide new insights for lifecycle analysis. The main

benefit of using such preferences is their ability to exhibit greater or lower levels

of risk aversion which, unsurprisingly, is something that matters when considering

mortality risks. Moreover, the risk-sensitive framework does not constrain the IES

(which does not even need to be constant)

In practice, we find that increasing risk aversion leads to exhibiting greater concern

for deaths at younger ages, and relatively less for deaths at older ages, reflecting that

the death of a young individual is considered as being a more dramatic consequence
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than the death of an elderly person. We illustrated the relevance of this point by

contrasting Covid-19 with the 1918 influenza outbreak, but there are of course many

other cases where accounting for risk aversion could yield interesting new insights:

one could for example think of the opioid epidemic or of the gun violence public

health epidemic.26 Indirectly, our paper also emphasizes that epidemic management

requires the age-distribution of deaths (and not the total number of fatalities) be

carefully considered. Any intent to build a welfare relevant unidimensional indicator

from this age distribution needs to correctly account for risk aversion.

Appendix

A Proofs

We assume that u is defined on R+ and twice continuously differentiable on R∗+ =

R+ \ {0}.

A.1 Proof of Proposition 1

Two preliminary lemmas. First, we prove the following lemma.

Lemma 1 Recursive preferences represented with recursion (4) fulfill NSS iff they

admit a utility representation Ut where the period utility function u verifies u(c) >

(1− β)ud for some c.

Proof. If there exists c such that u(c) > (1 − β)ud then for all t < Tmax one has

Ut(c, d) = u(c) + βud > ud and preferences are NSS. Conversely, assume that u(c) ≤

(1− β)ud for all c. Then for all elements (c,m) ∈DTmax−1 one has UTmax−1(c,m) =
26See https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/07/

fact-sheet-biden-harris-administration-announces-initial-actions-to-address-the-
gun-violence-public-health-epidemic/ for a statement from the Biden-Harris administration
regarding gun violence in the US (April 7, 2021).
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u(c) + βud ≤ ud. This in turn implies, by induction, that for all t < Tmax and all

(ct,m) ∈Dt, one has U(ct,m) ≤ ud, in contradiction with NSS.

Second we explore the role of monotonicity.

Lemma 2 Recursive preferences with recursion (4) are monotone (in the sense

stated in Proposition 1) iff they admit a utility representation Ut where:

• the period utility function u is strictly increasing;

• ud and φ(ud) are finite.

Proof. With our weak order definition, if c1 > c′1 ≥ 0, then (c1, d) > (c′1, d).

Monotonicity then implies:

Ut(c1, d) > Ut(c′1, d). (29)

By definition, we have U(c′1, d) = u(c′1) + βud. Restricting inequality (29) to c′1 > 0,

we deduce that since u is continuous, u(c′1) is finite and ud < +∞. Similarly, using

Ut(c1, d) = u(c1) + βud, we show that ud > −∞. We deduce that ud is finite. For

c1 > c′1 ≥ 0, inequality (29) is then equivalent to: u(c1) > u(c′1), which implies that

the function u is increasing on R+. This implies that u(0) is also bounded from

above (but can be unbounded from below).

Let us further consider c′0 > 0. Monotonicity implies:

Ut(c′0,
1
2(c1, d)⊕ 1

2d) > Ut(c′0,
1
2(c′1, d)⊕ 1

2d), (30)

or, equivalently:

φ−1
(1

2φ(u(c1) + βud) + 1
2φ(ud)

)
> φ−1

(1
2φ(u(c′1) + βud) + 1

2φ(ud)
)
. (31)

Let us assume that φ(ud) = ±∞. In that case, φ−1
(

1
2φ(u(c1) + βud) + 1

2φ(ud)
)
and

φ−1
(

1
2φ(u(c′1) + βud) + 1

2φ(ud)
)
are equal and inequality (31) does not hold. We

deduce that φ(ud) is finite.
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Proof of Proposition 1. We assume that NSS and Monotonicity hold. We have:
Ut(d) = ud

Ut(ct,m) = u(ct) + βφ−1(πt(m)EmS [φ(Ut+1)] + (1− πt(m))φ(ud))
(32)

Since from Lemma 2, ud is finite, we can set for all t and for all m ∈ Dt, Ũt(m) =

Ut(m) − ud, as well as φ̃(x) = φ(x + ud), which means that φ̃−1(y) = φ−1(y) − ud.

Recursion (32) then becomes:
Ũt(d) = 0,

Ũt(ct,m) = u(ct) + βφ̃−1(πt(m)EmS [φ̃(Ũt+1)] + (1− πt(m))φ̃(0)),

Since Ũt represents the same preferences as Ut, we can set ud = 0 without loss of

generality.

Furthermore, since φ(ud) is finite (Lemma 2), so is φ̃(0). We can define: φ̂(x) =

φ̃(x)− φ̃(0) – which means that φ̂−1(y) = φ̃−1(x+ φ̃(0)). Thus, recursion (32) finally

becomes: 
Ũt(d) = 0,

Ũt(ct,m) = u(ct) + βφ̂−1(πt(m)EmS [φ̂(Ũt+1)]),

Dropping the tilde and hat decoration, we will obtain recursion (6). Furthermore,

observe that φ is defined up to a positive multiplicative factor: if preferences are

represented by φ, they will also be represented by µφ for any µ > 0.

A.2 Proof of Proposition 3

We consider c0, c1 > 0 and π ∈ (0, 1). Monotonicity implies that u is strictly

increasing and that u−1 exists and is unique. For any c > 0, we define the function

ηc0,c1 as follows:

ηc0,c1(c) = u−1
(
φ−1

(
π−1φ

(
β−1(u(c0)− u(c)) + φ−1 (πφ(u(c1)))

)))
, (33)
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We can observe that by definition:

ηc0,c1(c0) = u−1 (u(c1)) = c1, (34)

and

Ut(c, π(ηc0,c1(c), d)⊕ (1− π)d) = Ut(c0, π(c1, d)⊕ (1− π)d). (35)

The former relationship can equivalently be written as:

u(c0) + βφ−1 (πφ(u(c1))) = u(c) + βφ−1 (πφ(u(ηc0,c1(c)))) . (36)

From (33) and (34), since u and φ are continuously differentiable, there exists a

neighborhood B̃c0 of c0, where ηc0,c1 exists and is continuously differentiable.

Let c′1 > 0 and c′1 6= c1. Similarly, we can find another neighborhood B̂c0 of c0

such that the function ηc0,c′1
(c) defined as in (33) is continuously differentiable on

B̂c0 and verifies for c ∈ B̂c0 :

u(c0) + βφ−1 (πφ(u(c′1))) = u(c) + βφ−1
(
πφ(u(ηc0,c′1

(c)))
)
. (37)

We define Bc0 = B̂c0 ∩ B̃c0 , which is a non-empty open set. OD implies that equalities

(36) and (37) lead to, for all c ∈ Bc0 :

u(c0) + βφ−1
(
π

2 (φ(u(c1)) + φ(u(c′1))
)

= (38)

u(c) + βφ−1
(
π

2
(
φ(u(ηc0,c1(c))) + φ(u(ηc0,c′1

(c)))
))

.

We compute the derivatives of equation (36) and its counterpart for ηc0,c′1
, as well as

of (38). We obtain for c ∈ B0:

0 = u′(c) + βπ
∂ηc0,c1(c)

∂c
u′(ηc0,c1(c))φ′(u(ηc0,c1(c)))(φ−1)′ (πφ(u(ηc0,c1(c)))) ,

0 = u′(c) + βπ
∂ηc0,c′1

(c)
∂c

u′(ηc0,c′1
(c))φ′(u(ηc0,c′1

(c)))(φ−1)′
(
πφ(u(ηc0,c′1

(c)))
)
,

0 = u′(c) + 1
2(φ−1)′

(
π

2
(
φ(u(ηc0,c1(c))) + φ(u(ηc0,c′1

(c)))
))

×
(
βπ

∂ηc0,c1(c)
∂c

u′(ηc0,c1(c))φ′(u(ηc0,c1(c))) + βπ
∂ηc0,c′1

(c)
∂c

u′(ηc0,c′1
(c))φ′(u(ηc0,c′1

(c)))
)
.
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After substitution, we obtain since u′(c) > 0 and using (φ−1)′;

1
(φ−1)′

(
π
2

(
φ(u(ηc0,c1(c))) + φ(u(ηc0,c′1

(c)))
)) =

1
2

1
(φ−1)′ (πφ(u(ηc0,c1(c)))) + 1

2
1

(φ−1)′
(
πφ(u(ηc0,c′1

(c)))
) .

We deduce that 1
(φ−1)′ is affine locally (see Aczél, 1966). Note that by changing π

and c0 we can cover the whole definition space of 1
(φ−1)′ and by continuity guarantee

that 1
(φ−1)′ is actually affine globally. We deduce that there exist k and y0, such that

1
(φ−1)′(y) = −k(y − y0). After integration, we find that there exists φ0, such that:

φ−1(y) = − 1
k

ln(y−y0
φ0

), which implies φ(x) = φ0e
−kx + y0. We further normalize φ

using φ(0) = 0 and φ′(0) = 1 and obtain:

φ(x) = 1
k

(
1− e−kx

)
.

A.3 Proof of Proposition 2

A.3.1 First step.

We consider c0, c1 > 0. We have: Ut(c0, (c1, d)) = u(c0) + βu(c1). The marginal rate

of substitution between c0 and c1, denoted by MRSc0,c1 can be written as follows:

MRSc0,c1 = β
u′(c1)
u′(c0) . (39)

Homotheticity implies that MRSc0,c1 = MRSλc0,λc1 .27 From (39), u′(λc1)
u′(λc0) is indepen-

dent of λ. Computing the log-derivative in λ for λ = 1 yields: c1
u′′(c1)
u′(c1) = c0

u′′(c0)
u′(c0) ,

which means that cu′′(c)
u′(c) is constant and u is CRRA. There exists K > 0, σ, and ul,

such that:

u(c) =


K c1−σ

1−σ + ul if σ 6= 1,

ln(c) + ul otherwise.
(40)

27Let c′0 and c′1 such that u(c0) + βu(c1) = u(c′0) + βu(c′1). We obtain u′(c0)∂c0
∂c1

+ βu′(c1) = 0.
Using homotheticity, we obtain that for any λ, u(λc0) + βu(λc1) = u(λc′0) + βu(λc′1), which yields
u′(λc0)∂(λc0)

∂(λc1) + βu′(λc1) = 0 = u′(λc0)∂c0
∂c1

+ βu′(λc1).
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A.3.2 Second step.

We consider c0, c1 > 0 and π ∈ (0, 1). We have:

Ut(c0, π(c1, d)⊕ (1− π)(c2, d)) = u(c0) + βφ−1 (πφ(u(c1)) + (1− π)φ(u(c2))) .

The marginal rate of substitution between c0 and c1– that we still denote byMRSc0,c1

– is then as follows:

MRSc0,c1 = βπ
u′(c1)
u′(c0)

φ′(u(c1))
φ′ (φ−1 (πφ(u(c1)) + (1− π)φ(u(c2)))) .

Homotheticity impliesMRSc0,c1 = MRSλc0,λc1 . Since we already proved that u′(c1)
u′(c0) =

u′(λc1)
u′(λc0) , this implies that φ′(u(λc1))

φ′(φ−1(πφ(u(λc1))+(1−π)πφ(u(c2)))) is independent of λ. Similarly,

considering the MRS between c0 and c2, we obtain that φ′(u(λc2))
φ′(φ−1(πφ(u(λc1))+(1−π)πφ(u(c2))))

is independent of λ. Taking the ratio, we deduce that φ′(u(λc1))
φ′(u(λc2)) is independent of λ.

Taking the log derivative yields:

c1u
′(λc1)φ

′′(u(λc1))
φ′(u(λc1)) = c2u

′(λc2)φ
′′(u(λc2))
φ′(u(λc2)) , (41)

or equivalently that cu′(c)φ′′(u(c))
φ′(u(c)) is constant. There are two cases.

1. There exists c, such that φ′′(u(c)) = 0. In that case, from (41), we deduce that

φ′′ is null everywhere. Since φ(0) = 0 and we impose φ′(0) = 1, we obtain

φ(x) = x. From (40), we deduce that (6) becomes:

Ut(ct,m) =


K c1−σ

1−σ + ul + βπtUt+1,

K ln(c) + ul + βπtUt+1,

which is the standard Yaari (1965) model with a CRRA utility function.

2. For all c, φ′′(u(c)) 6= 0. There are two cases depending on the functional form

of u in (40).

(a) u(c) = K c1−σ

1−σ + ul for some K > 0, σ 6= 1, and u0. Using (41), we obtain
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that there exists ρ, such that for all c:

K
c1−σ

1− σ
φ′′(K c1−σ

1−σ + ul)
φ′(K c1−σ

1−σ + ul)
= ρ− 1

or with y = K c1−σ

1−σ + ul: (y− ul)φ
′′(y)
φ′(y) = ρ− 1, which yields with φ(0) = 0:

φ(y) = φ0 ((y − ul)ρ − (−ul)ρ)
κ

. (42)

We now consider

Ut(c0, π(c1, d)⊕ (1− π)d) = u(c0) + βφ−1 (πφ(u(c1)))

and the MRS between c0 and c1. Using similar steps as above and setting

u1 = φ−1 (πφ(u(λc1))):

φ(u(λc1)) φ
′′(u(λc1))

φ′(u(λc1))2 = φ(u1) φ
′′(u1)

φ′(u1)2 .

This implies that there exist a neighborhood B and a constant C, such

that for all y ∈ B, we have:

φ(y)φ′′(y)
φ′(y)2 = C. (43)

Using (42), we deduce for all y ∈ B, 1 − (−ul)ρ
(y−ul)ρ

= Cκ
ρ−1 , which imposes

ul = 0. Using (42) and φ′(1) = ρ for the scaling normalization, we obtain

φ(y) = yρ, with ρ > 0, since φ is increasing. Recursion (6) becomes:

Ut(ct,m) = K
c1−σ
t

1− σ + β(πtE[Uρ
t+1])

1
ρ ,

where we can set K = 1 without loss of generality since the preferences

represented by Ut and K−1Ut are the same. We finally obtain:

Ut(ct,m) = c1−σ
t

1− σ + β(πtE[Uρ
t+1])

1
ρ , with ρ > 0.

(b) u(c) = K ln(c) + ul for some K > 0 and ul. We use similar steps as in
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the previous case. Equation (41) implies that there exists k, such that
φ′′(y)
φ′(y) = −k for all y, or after integration with φ(0) = 0 and φ′(0) = 1 (that

we can impose without loss of generality): φ(y) = 1−e−ky
k

. Furthermore,

equality (43) still holds and yields: 1− eky = C for all y, which imposes

k = 0. We fall back on the additive case.

A.4 Proof of Proposition 4

As a preliminary, we prove the following Lemma.

Lemma 3 If u(ct) > 0 for all t ∈ {0, . . . , Tmax − 1}, we have Vt > 0 for all

t ∈ {0, . . . , Tmax − 1}.

The proof goes by backward induction. For t = Tmax − 1, we have VTmax−1 =

u(cTmax−1) > 0 by assumption. Let t ∈ {0, . . . , Tmax − 2} and assume that the result

holds for t+ 1. We have by recursion:

Vt = u(ct)−
β

k
log(πte−kVt+1 + 1− πt).

Since x 7→ −β
k

log(πte−kx + 1− πt) is increasing (its derivative is β πte−kx

πte−kx+1−πt ≥ 0)

and Vt+1 ≥ 0 by induction hypothesis, we deduce that Vt ≥ u(ct) > 0. This concludes

the induction and the proof of Lemma 3.

The proof of the first point of Proposition 4 is straightforward as Vt+1 is indepen-

dent of πt. So, ∂∆t

∂πt
= β ekVt+1

(πt+(1−πt)ekVt+1 )2 > 0.

We now turn to the proof of the second point. From the expression of the discount

factor ∆t = β πt
πt+(1−πt)ekVt+1 , we deduce that the sign of ∂∆t

∂k
is the same as the one of

∂(−kVt+1)
∂k

.28 Using the recursion (7) and defining Wt = −kVt, we deduce:

WTmax−1 = −ku(cTmax−1), (44)

Wt = −ku(ct) + β log(πteWt+1 + 1− πt) for t < Tmax − 1. (45)

28Though uncertain, the horizon in our setup is finite. So, the differentiability properties of
intertemporal utility function (such as Vt) directly comes from the differentiability properties of the
period utility function.
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We show by backward induction that ∂Wt

∂k
< 0 for all t. For t = Tmax − 1, we

deduce from (44):
∂WTmax−1

∂k
= −u(cTmax−1) < 0,

because we assume u(ct) > 0 for all t. Let t ∈ {0, . . . , Tmax − 2} and assume that
∂Wt+1
∂k

< 0. Using (45), we get:

∂Wt

∂k
= −u(ct) +

βπt
∂Wt+1
∂k

πteWt+1 + 1− πt
,

which implies ∂Wt

∂k
< 0 because of the induction hypothesis and the assumption that

u(ct) = c1−σ
t

1−σ + ul > 0 for all t. This concludes the induction and we have ∂Wt

∂k
< 0 for

all t.

For the third point, we directly have ∂∆t

∂Vt+1
= −βk(1−πt)ekVt+1

(πt+(1−πt)ekVt+1 )2 < 0 if k > 0.

Let us prove that Vt+1 is increasing with future consumption and future survival

probabilities. Let t ∈ {0, . . . , Tmax− 1} and 1 ≤ s ≤ Tmax− t− 1. We first show that
∂Vt+1
∂ct+s

> 0. Start with observing that because the utility defined in (7) is independent

of the past, we have ∂Vt+s+1
∂ct+s

= 0. We now prove that ∂Vt+s′
∂ct+s

> 0 for all s′ ∈ {1, . . . , s}

by backward induction on s′. For s′ = s, we have using ∂Vt+s+1
∂ct+s

= 0:

∂Vt+s
∂ct+s

= u′(ct+s) > 0.

Let s′ ∈ {1, . . . , s− 1} and assume that ∂Vt+s′+1
∂ct+s

> 0. We have using (7):

∂Vt+s′

∂ct+s
= βe−kVt+s′+1

πt+se
−kVt+s′+1 + 1− πt+s

∂Vt+s′+1

∂ct+s
> 0, (46)

as a consequence of the induction hypothesis and u(ct) > 0 for all t. This concludes

the induction and we have ∂Vt+s′
∂ct+s

> 0 for all s′ ∈ {1, . . . , s}. In particular, for s′ = 1,
∂Vt+1
∂ct+s

> 0 where t ∈ {0, . . . , Tmax − 1} and 1 ≤ s ≤ Tmax − t− 1 are arbitrary.

The proof is similar for probabilities. We fix t ∈ {0, . . . , Tmax − 1} and 1 ≤

s ≤ Tmax − t − 1. Since we have ∂Vt+s+1
∂πt+s

= 0, we will prove that ∂Vt+s′
∂πt+s

> 0 for all
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s′ ∈ {1, . . . , s} by backward induction on s′. For s′ = s:

∂Vt+s
∂πt+s

= β

k

1− e−kVt+s+1

πte−kVt+s+1 + 1− πt
> 0.

Let s′ ∈ {1, . . . , s−1} and assume that ∂Vt+s′+1
∂ct+s

> 0. We have: ∂Vt+s′
∂πt+s

= βe
−kVt+s′+1

πt+se
−kVt+s′+1+1−πt+S

∂Vt+s′+1
∂πt+s

>

0 by induction hypothesis. This concludes the induction.

A.5 Proof of Proposition 5

The first point is implied by Lemma 3 and the fact that V 7→ β
k
cσt

1−e−kV
πte−kV +1−πt is

increasing (independently of the sign of k).

For the second point, we have from (22):

∂MRRt

∂Vt+1
= βzσt

e−kVt+1

(1− πt(1− e−kVt+1))2 > 0,

since k > 0 and u(ct) > 0 for all t. We conclude the third point on future consumption

and probabilities using the same arguments as in the proof of Proposition 4 in

Appendix A.4.

For the third point, using the expression of MRRt in equation (22), we have:

∂MRRt

∂πt
= β

k
cσt

(1− e−kVt+1)2

(1− πt(1− e−kVt+1))2 ,

whose sign is the sign of k. This proves the second point.

We now turn to the last point. Let assume k > 0 and MRRt > 0. From (22), we

have:

1
MRRt

∂MRRt

∂k
= −1

k
+ e−kVt+1

(1− πt(1− e−kVt+1))(1− e−kVt+1)
∂(kVt+1)
∂k

.

The first term (−1/k) is negative while the second term is positive (from ∂Wt

∂k
< 0 as

proved in Section A.4 and where Wt is defined in equations (44)–(44)). The overall

sign is ambiguous.
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