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Abstract

We study the saving behavior of infinitely long-lived agents who face income uncer-
tainty and deterministic interest rates. Using monotone recursive preferences, we prove
that risk aversion unambiguously increases savings. The result accounts for possibly bind-
ing borrowing constraints and holds for very general specification of income uncertainty,
which can follow any kind of stochastically monotone process.
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1 Introduction

Analyzing the impact of risk on individual behaviors is a long-standing line of research in

decision sciences. However, understanding how individuals make decisions in real life situa-

tions is a very difficult question to tackle. Indeed, choices under uncertainty may depend on a

number of factors, such as risk appetite, the type of decision that has to be made, interaction

between the various risks at stake or insurance possibilities. Clear-cut characterizations of

individual behavior under risk can only be ascertained when the problem is more precisely

specified.

One particular issue is the so-called precautionary saving problem, where one seeks to

understand how future income uncertainty affects saving decisions. The early works of Leland

(1968) and Sandmo (1970) on the issue have been followed by numerous contributions in

both the economics and finance literature. In particular, Carroll (1997) emphasized in a

seminal paper that precaution –i.e., sensitivity to future income uncertainty– is, quantitatively
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speaking, one of the main motives for savings. This result has been confirmed by many

empirical analyses, including the recent study of Mody, Sandri, and Ohnsorge (2012), which

reports that “at least two-fifths of the sharp increase in household saving rates between 2007

and 2009 can be attributed to the precautionary savings motive.” Precautionary savings are

therefore seen as having significant impacts on aggregate wealth accumulation, with major

consequences for the economy and business cycles.1 Moreover, the issue is also very popular in

the corporate finance literature in which the precautionary motive is viewed as being a central

ingredient to understand the management of liquidity, and more precisely of cash holdings,

by corporates.2

Despite the sustained interest in precautionary savings, few general results are avail-

able. Indeed, a large number of papers have focused on precautionary savings in two-period

economies, in which, by construction, saving only occurs once (in the first period) and income

is uncertain in a single period (in the second period). Among these papers, one can cite Drèze

and Modigliani (1972), Kimball (1990), Bleichrodt and Eeckhoudt (2005), Courbage and Rey

(2007), Eeckhoudt and Schlesinger (2008), Kimball and Weil (2009), Bommier, Chassagnon

and LeGrand (2012), Jouini, Napp and Nocetti (2013), Nocetti (2016), this list being far from

exhaustive. The extension to many periods or to an infinite horizon has rarely been addressed.

We are aware of only two contributions where precautionary savings are analytically studied

in an infinite horizon setting with a framework that is flexible enough to discuss the role of

risk aversion. These are the papers by van der Ploeg (1993) and Weil (1993). Both rely

on specific fully parametrized income processes and on closed-form solutions. Besides these

two analytical studies, the problem has also been tackled in infinite horizons using numerical

techniques –which therefore also imply assuming specific parametric income processes– as in

Wang, Wang, and Yang (2016).

In the current paper, we address the question of precautionary savings in an infinite-

horizon setting. We consider infinitely long-lived agents who have to take saving-consumption

decisions, while being uncertain about their future incomes. The interest rate is deterministic

but possibly time-dependent. A key feature of our approach is that we do not rely on a partic-

ular specification of the income process, enabling us to consider complex forms of dependence.

We prove that whenever the income process is stochastically monotone,3 higher risk aversion

implies greater precautionary savings. Rather intuitively, more risk averse individuals will opt
1For example, Challe and Ragot (2016) showed that household precautionary savings are a major channel

for the propagation of economic shocks, in particular during recessions.
2The importance of the precautionary motive for corporate liquidity policies was for highlighted in empirical

studies (Bates, Kahle and Stulz 2009, Campello, Graham and Harvey 2010, Duchin 2010, Duchin, Ozbas
and Sensoy 2010), as well as in surveys of corporate managers (Lins, Servaes and Tufano 2010, Campello,
Giambona, Graham and Harvey 2011).

3Loosely speaking, it means that good news for today’s income cannot convey unfavorable news for income
in future periods. A formal definition is provided in Section 3.
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for larger amounts of savings in presence of income uncertainty. We thus provide a simple

and intuitive connection between risk aversion and saving decisions. To our knowledge, this is

the first general result that does not rely on an ad-hoc parametric specification of the income

process.

The machinery we develop to prove our result relies on the concept of comonotonicity

and more precisely of conditional comonotonicity as introduced by Jouini and Napp (2004).

Intuitively, two processes will be conditionally comonotone if future large realizations for one

process are accompanied by large realizations for the other process. The first step of the proof

involves showing that income, consumption and continuation utilities are comonotone, even

if borrowing constraints can be binding at any future date. It then follows that increasing

savings generates a transfer of welfare from states with high continuation utility to states

with low continuation utility, which diminishes the dispersion of lifetime utilities and therefore

corresponds to a risk reduction. A more risk averse individual cares more about risk reduction,

by definition, and therefore chooses higher amounts of savings.

A key point for our analysis involves relating risk aversion to the willingness to reduce

dispersion in lifetime utilities. This is possible because we focus on preferences that are

monotone, a property generally considered to be very appealing when it comes to modeling

rationality but sometimes abandoned to gain flexibility while maintaining tractability (further

discussion is provided in Section 2). Monotonicity means that a decision maker never takes an

action if another available action provides better realizations in all circumstances. Consider

for example, a firm which seeks to maximize its intertemporal profit. Monotonicity implies

that if the firm has to choose between a risky project and another one that provides greater

intertemporal profits in all circumstances, the firm will opt for the latter. While monotonicity

is systematically fulfilled when using expected utility specifications, it imposes non trivial

restrictions when using recursive representations of preferences (see Bommier, Kochov, and

LeGrand 2017). The numerical examples provided in Section 5 actually show that our results

do not hold with non-monotone frameworks, therefore underlining the benefit of bringing the

assumption of preference monotonicity to the forefront.

2 Risk aversion in intertemporal frameworks

Multidimensional utility theory and risk aversion. The notion of risk aversion was

initially introduced for preferences over unidimensional monetary payoffs (Arrow 1963, and

Pratt 1964). In such a simple case, when one further assumes the expected utility theory

framework, risk aversion is characterized by the concavity of the utility function. Greater

concavity implies a stronger degree of risk aversion. Yaari (1969) extended the analysis
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by allowing for all kinds of payoffs (multi-dimensional, non-monetary, etc). To do so, he

introduced a general procedure to compare risk aversion. This procedure states that a decision

maker A should be considered as being at least as risk averse as another decision maker B

if every risky choice that is acceptable to A (compared with receiving some deterministic

reference payoff) is also acceptable to B (compared with the same reference payoff). The

procedure is extremely general, since it does not presuppose a specific model of choice under

uncertainty and applies to any kind of payoff. Yaari’s approach has subsequently become the

standard way of comparing risk aversion, and is for example used in Epstein and Zin (1989).

A well known feature of Yaari’s procedure is that two decision makers can be compared

in terms of risk aversion only if they have the same preferences over deterministic prospects

(i.e., riskless payoffs). Several contributions, as those of Richard (1975), Duncan (1977) or

Karni (1979), avoid this restriction by quantifying risk aversion through specific risk premi-

ums. Although these approaches are insightful to understand the degree of risk taking of

individuals in specific settings, they are not suited to studying the causal relation between

risk aversion and savings. Indeed, to draw conclusions on the role of risk aversion, it is key to

understand the consequences of an increase in risk aversion, while everything else, including

preferences over deterministic prospects, remains unchanged. Otherwise, we could end up

with the hardly tenable conclusion that heterogeneity in saving behaviors could be attributed

to heterogeneity in risk aversion, even when there is no risk at play. This necessity of focusing

on models that are flexible enough to disentangle risk aversion and the ranking of determin-

istic prospects drastically reduces the set of models that can be used. We review below some

of the possibilities.

Expected utility. The standard additive expected utility model assumes that the decision

maker maximizes the following expectation:

E

[ ∞∑
t=0

βtu(ct)

]
, (1)

where ct is consumption in period t, β is a constant discount factor and u an instantaneous

utility function. In this model, β and u are pinned down (up to a positive affine transforma-

tion for u) by preferences over deterministic prospects. This model therefore lacks flexibility

to explore the role of risk aversion while keeping preferences over deterministic prospects

unchanged.

One solution to study the role of risk aversion within the expected utility framework
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involves extending expression (1) by assuming that the decision maker maximizes:

ψ−1E

[
ψ

( ∞∑
t=0

βtu(ct)

)]
, (2)

where the function ψ is an increasing function which plays no role in absence of risk. Aug-

menting its concavity, however, generates an increase in risk aversion in the usual sense of

Yaari. This route, initially suggested by Kihlstrom and Mirman (1974), was followed by sev-

eral authors (Pye 1973, Ahn 1989, van der Ploeg 1993, among others). Such preferences have

nevertheless been criticized for being non-stationary, raising time-inconsistency issues if the

function ψ is not exponential, and implying time-dependent tastes in the exponential case

(see Epstein and Zin 1989, pp. 951-952).

Recursive preferences. To study risk aversion without being subject to the above criti-

cism, Epstein and Zin (1989) extended the recursive approach of Kreps and Porteus (1978)

to an infinite-horizon setting. Decision makers maximize at time t a utility function Ut which

is linked to the (random) continuation utility Ut+1 through the following recursion:

Ut = u(ct) + βφ−1 (Et [φ(Ut+1)]) . (3)

The function φ is an increasing function which has no impact on preferences over deterministic

prospects. Its concavity can be directly interpreted in terms of risk aversion, with greater

concavity implying greater risk aversion in the sense of Yaari.4 The recursive construction of

equation (3) rules out any possible problem of time-inconsistency or of time-varying tastes.

Moreover, the standard additive case of equation (1) is obtained when φ is affine. Such

recursive preferences have become a standard tool to explore the role of risk aversion.5

The most widespread recursive specification –the so-called Epstein-Zin-Weil (EZW, hence-

forth) specification, which can be found in Epstein and Zin (1989) and Weil (1990)– is obtained

when u(c) = c1−γ

1−γ for some parameter 0 < γ 6= 1 and when φ exhibits constant relative risk

aversion (i.e., φ(u) = ((1−γ)u)
1−α
1−γ

1−α for 0 < α 6= 1 or φ(u) = 1
1−γ log ((1− γ)u) for α = 1,

where α is the parameter controlling for risk aversion). These preferences are popular for
4See for example Chew and Epstein (1991) for a formal result.
5Another popular way to introduce Kreps-Porteus preferences involves using the following recursion:

Vt = u−1
(
u(ct) + βu(φ̃−1(E[φ̃(Vt+1)]))

)
. (4)

However, setting Ut = u(Vt) and φ = φ̃ ◦ u−1 in (4) again yields specification (3). Whether one uses (3) or
(4) is thus just a matter of normalization and notation. To avoid confusion, we will systematically rely on the
normalization used in (3).
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disentangling risk aversion from the intertemporal elasticity of substitution (equal to 1
γ ).

6 A

well known feature of the EZW specification is that the comparison of consumption programs

is unaffected when multiplying all consumption levels by a constant. Wealth effects thus

reduce to simple scaling effects and have no impact on the optimal propensity to save. In

practice, this significantly simplifies the analysis of problems in which income or asset returns

are random, an aspect that contributed to the popularity of the specification.

In his work on precautionary savings, Weil (1993) also uses u(c) = c1−γ

1−γ with 0 < γ 6= 1,

but considers φ(u) = 1−e−λ((1−γ)u)
1

1−γ

λ with λ > 0. To avoid possible confusion with EZW

preferences, we will refer to this specification as Weil (1993)’s preferences.7 Increasing λ

generates an increase in risk aversion, but the function φ is neither concave nor convex. Such

preferences therefore admit no simple comparison with the standard additive model in terms

of risk aversion, exhibiting greater risk aversion at some utility levels and lower risk aversion

at other utility levels. In particular, the limit case λ = 0 does not provide the usual additive

model.8

Risk-sensitive preferences. Although rarely mentioned in the literature, Kreps-Porteus

preferences generally fail to fulfill a rather natural property of preferences, which is that of

monotonicity. Preference monotonicity stipulates that an agent will not take an action if

another available action is preferable in all circumstances. Consider for example a standard

two-period consumption-saving problem, where uncertain second period income is distributed

over an interval [ymin, ymax]. Monotonicity requires that an agent will not save more than

she would do if anticipating second period income ymin for sure, or less than she would do if

anticipating ymax for sure. With non-monotone preferences, this may not be the case. For

example, with EZW preferences, a decision maker who learns that she might receive some

positive bonus at the end of the year might decide to react to this information by lowering

her current consumption and saving more.9 The agent would react to good news (e.g., the

possibility of being awarded a bonus) by taking extra precautions (saving more). One may

consider this behavior to be unintuitive and contrary to the notion of precaution. This may
6EZW preferences can also accommodate the case of an intertemporal elasticity of substitution equal to

one. This corresponds to u(c) = log(c) and a function φ which –because of utility renormalization– exhibits
constant absolute (not relative) risk aversion. Such a specification, used for example in Tallarini (2000), also
fits into the class of risk-sensitive preferences that we discuss below.

7In his paper, Weil uses the normalization associated with equation (4) rather than the one associated
with equation (3). The function φ̃ is then exponential, but this is different from the risk-sensitive preferences
described below which assume φ (and not φ̃) to be exponential. Weil (1993)’s preferences can accommodate
the case γ = 1 by setting u(c) = log(c) and φ(u) = 1−exp(−λ exp(u))

λ
.

8For instance, in a two-period setup, the limit case λ = 0 provides c
1−γ
0
1−γ + β

1−γ (E [c1])
1−γ , which differs

from the standard additive utility function c
1−γ
0
1−γ + β

E[c1−γ1 ]
1−γ because of Jensen inequality.

9See Bommier, Kochov, and LeGrand (2017) for a numerical example.
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eventually result in counter-intuitive conclusions about the role of risk aversion.

The only way to combine the recursive approach (3) with the property of monotonicity

involves using exponential (or affine) functions φ (see Bommier, Kochov, and LeGrand, 2017

for a formal representation result).10 With φ(u) = 1−e−ku
k , equation (3) can be rewritten as:

Ut =

u(ct)− β
k log

(
Et[e

−kUt+1 ]
)

, if k 6= 0,

u(ct) + βEt[Ut+1] , if k = 0.
(5)

Consistently with the role of φ described above, the parameter k only plays a role in presence

of uncertainty and governs risk aversion, with greater risk aversion being related to larger

values of k. The case k = 0 in equation (5) corresponds to the standard additively separable

expected utility model. Intuitively, these preferences are monotone because the instantaneous

utility can be “entered” into the certainty equivalent: Ut = −β
k log

(
Et[e

− k
β

(u(ct)+βUt+1)
]
)

if

k 6= 0 and Ut = Et[u(ct) + βUt+1] if k = 0. This is impossible with other forms of certainty

equivalents.

Recursive preferences as in equation (5) are usually called risk-sensitive preferences and

were first introduced by Hansen and Sargent (1995) in a work inspired by control theory.

As explained in Hansen, Sargent, Turmuhambetova, and Williams (2006, p. 55), the risk-

sensitive decision rule can be formalized as a Nash equilibrium solution of a game where

“a maximizing player (‘the decision maker’) chooses a best response to a malevolent player

(‘nature’) who can alter the stochastic process within prescribed limits”. With such a game-

theoretic interpretation, the counterpart of the assumption of preference monotonicity is the

elimination of dominated strategies. The monotonicity of risk-sensitive preferences is simply

due to the fact that the Nash equilibrium rules out the choice of dominated strategies.

It is worth mentioning that risk-sensitive preferences do not impose restrictions on the

intertemporal elasticity of substitution, which does not need to be constant. Moreover, with

risk-sensitive preferences, wealth effects have typically non-trivial consequences (the excep-

tion being when a constant intertemporal elasticity of substitution of one is assumed) which

generally precludes the derivation of closed form solutions. However, as we will see, the fact

that they are monotone allows us to derive new results on the role of risk aversion.

3 Precautionary savings in dynamic settings

To further pursue our analysis, we focus on risk-sensitive preferences, which are the only ones

to be recursive and monotone, while being flexible enough to disentangle risk aversion from
10In particular EZW preferences are monotone only if intertemporal elasticity of substitution is equal to one

or if they correspond to the standard additive model. Weil (1993)’s preferences are non-monotone in all cases.
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intertemporal substitution. More specifically, we consider infinitely long-lived agents with

preferences given by recursion (5). Agents only differ by the risk aversion parameter k ≥ 0.11

The function u is assumed to be increasing, concave, and twice continuously differentiable.

Agents are endowed with an exogenous income process (yt)t≥0 which does not need to

be specified to derive our results. We only assume that this process is stochastically mono-

tone meaning that for all t ≥ 0 and x ∈ R the function (y0, y1, . . . , yt) 7→ Prob(yt+1 ≥
x|y0, y1, . . . , yt) is non-decreasing. The assumption of stochastic monotonicity formalizes the

idea that a good income realization at a given date cannot convey negative information for

subsequent periods. Most income processes used in the literature comply with such an as-

sumption. This is for example the case of standard autoregressive processes, as with those

considered for instance in van der Ploeg (1993) and Weil (1993). Technically speaking, the

assumption of a stochastically monotone income process does not rule out extremely rapid in-

come growth or income decline, which could result in convergence problems, with no existing

solution to recursion (5). Rather than introducing a set of technical assumptions, we simply

assume that the income process and the preference parameters are such that convergence

problems do not occur.

We consider the saving decision at time t of agents with wealth w and realized income

trajectory denoted by yt = (y0, . . . , yt).12 The gross interest rate between dates t and t + 1,

denoted by Rt+1, is time-varying but deterministic. Let w 7→ V k
t (w, yt) be the indirect utility

at time t of the agent with risk aversion k. We have:

V k
t (w, yt) = max

st∈R
u(ct)−

β

k
logEt

[
e−kV

k
t+1(Rt+1st,yt+1)

]
, (6)

s.t. (i) yt + w − st = ct, (ii) ct > 0, and (iii) st ≥ st(yt),

where st(yt) is the borrowing constraint at time t. This limit may reflect “natural” constraints

–also sometimes called solvency constraints– due to the fact that an agent cannot borrow more

than what she can repay in the worst scenario, or may be exogenous and related to market

imperfections. Since the income process is not stationary, the borrowing constraint is likely

to depend on the information obtained through past income realization information. This is

why st is explicitly set as a function of yt, the income trajectory. In line with the assumption

of a stochastically monotone income process, we assume that st(yt) is non-increasing in yt.

Intuitively, this means that good news concerning income cannot convey negative information
11By imposing k ≥ 0, we restrict the study to agents that are at least as risk averse as a standard additively

separable expected utility maximizer. Cases where k < 0 would be be difficult to address, due to potential
non-convexity issues.

12We indicate the whole income history, as the income process is not necessarily Markovian. Expectations
regarding future income may then depend on the whole income history.
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about future borrowing constraints. This specification of course includes the case where

borrowing constraints are zero and independent of past income (st = 0 for all t), which

is a frequent assumption in the literature. Finally, we assume that for all t and all income

histories yt at date t, and all income realizations yt+1 in period t+1, we have Rtst(yt)+yt+1 >

st+1(yt+1), meaning that saving st(yt) in period t is possible.13

If w ≤ st(yt)− yt, the above program is not well defined since no saving and consumption

level fulfill the constraints (i) to (iii) in problem (6). For any w > st(y
t) − yt, we denote by

skt (w, y
t) the solution of the optimization problem, that is the amount that the agent with

wealth w and risk aversion k chooses to save. We can now state the following result:

Proposition 1 (Propensity to save) Greater risk aversion implies a higher propensity to

save at any date. Formally, for all t ≥ 0, yt, w > s(yt) − yt, k, k′ ≥ 0, the following

implication holds:

k′ ≥ k ⇒ sk
′
t (w, yt) ≥ skt (w, yt).

Proof sketch. The formal proof is provided in Appendix. The main intuition of the proof can

be summarized as follows. We first establish that, even in the presence of binding borrowing

constraints, consumption, income and continuation utility fulfill a property of conditional

comonotonicity as introduced by Jouini and Napp (2004). This means that, for a given history

yt, high income realizations at time t+1 will also correspond to high continuation utilities and

high consumption levels. The latter aspect implies that the impact on continuation utility

of a marginal increase in saving st is larger if information at date t+ 1 reveals a low income

rather than a high income. Thus, an increase in savings generates a transfer of welfare from

states with high continuation utility to states with low continuation utility, achieving a risk

reduction. Highly risk averse agents value this risk reduction more than low risk averse agents

and therefore end up saving more.

Proposition 1 shows that the more risk averse agent has a greater propensity to save

than the less risk averse one. The comparison is established for agents having the same

amount of wealth in period t. In dynamic problems, however, agents with different degrees

of risk aversion will hold different amounts of wealth at time t. The difference in their saving

behaviors will therefore result both from differences in propensities to save and from differences

in accumulated wealth levels. The function w 7→ skt (w, y
t) being non-decreasing (i.e., wealthier

agents save more), both effects go in the same direction, providing the following result:

13Not assuming such an inequality would necessarily lead to introducing another borrowing constraint
preventing the agent from making a decision likely to yield an infeasible situation in the following period. Our
formalization assumes that such constraints are already reflected in st(y

t).
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Corollary 1 (Wealth accumulation) Greater risk aversion implies greater accumulated

wealth. Formally, denote by (wkt )t≥0 the wealth process that results from the optimal saving

behavior of an agent with risk aversion k.14 The following implications holds:

k′ ≥ k ⇒ ∀t ≥ 0, wk
′
t ≥ wkt .

Corollary 1 indicates that if we compare two agents receiving the same exogenous stochas-

tic income and facing no other risks, the more risk averse agent will be wealthier than the less

risk averse agent, at all ages and in all circumstances.

The notion of precautionary savings refers to the amount of wealth accumulated to cope

with income uncertainty. Formally, precautionary savings at time t are usually defined as the

difference between the wealth accumulated when income risk in not insurable and the wealth

accumulated when income is fully insured. In our framework, which allows for stochastic bor-

rowing constraints, the definition of precautionary savings requires some assumptions be made

regarding the path of deterministic borrowing constraints when income can be fully insured.

Those assumptions, however, have no effect on our result regarding the relation between risk

aversion and precautionary savings. Suppose for example that when income risk can be fully

insured, the agent faces a sequence of deterministic income ŷt and of deterministic borrowing

constraints ŝt. Maximization of the utility defined in (5) generates a wealth trajectory ŵt,

which is independent of k, since there is no risk at play. Following the literature, we define

precautionary savings as:

∆wkt = wkt − ŵt.

The wealth trajectory ŵt, and therefore precautionary savings ∆wkt , may of course depend

on the specification of the sequence ŝt. However, since ŵt is independent of k, it immediately

follows from Corollary 1 that:

Corollary 2 (Precautionary savings) Greater risk aversion implies larger precautionary

savings. Formally:

k′ ≥ k ⇒ ∀t ≥ 0, ∆wk
′
t ≥ ∆wkt .

A distinct but related question is whether an agent with risk aversion k is prudent, i.e.,

whether ∆wkt ≥ 0 for all t ≥ 0. A partial answer is obtained when combining results that

are known to hold for the additive specification (i.e., when k = 0) and those of the current

paper. Indeed, Light (2016), who extends previous results of Miller (1976) and Kimball

(1990), shows that with the additive specification, when the income process is Markovian
14Formally speaking, wkt is defined by wk0 = 0 and wkt+1 = Rt+1s

k
t (w

k
t , y

t) for t ≥ 0.
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and the borrowing constraints are given by st = ŝt = 0, a sufficient condition to have non-

negative precautionary savings is the positivity of the third derivative of the instantaneous

utility function (u′′′ ≥ 0).15 It then follows from Corollary 2 that Light’s conclusion extends

to any risk-sensitive preferences with k ≥ 0. Note however that the current paper’s setting is

more general than Light’s, since it allows for non-Markovian income processes and stochastic

borrowing constraints. What determines the sign of precautionary savings in such a general

setting remains an open question, which looks challenging even when k = 0.

4 Relation to the previous literature

As mentioned in the introduction, most of the theoretical literature was developed in two-

period frameworks. However, a two-period economy can be modeled as an infinite period

economy, in which income and consumption remain constant forever from the second pe-

riod on. Thus, our result that risk aversion increases precautionary savings also applies to

two-period settings, and can therefore be compared with the conclusions of Kimball and Weil

(2009) and Bommier, Chassagnon and LeGrand (2012) who discuss the role of risk aversion in

two-period models. Kimball and Weil focus on Kreps-Porteus preferences, but do not impose

preference monotonicity. They find that an increase in risk aversion may increase or decrease

precautionary savings (see Proposition 7 in Kimball and Weil, 2009). Interestingly, Kimball

and Weil obtain this ambiguous conclusion by considering non-monotone EZW specifications.

We thus readily know that our results of Section 3 do not extend to EZW preferences. In

fact, the contrast between the ambiguous findings of Kimball and Weil (2009) and the un-

ambiguous statements of Proposition 1 and Corollaries 1 and 2 highlights the significance

of assuming preference monotonicity when investigating the link between risk aversion and

precautionary savings. A way to formally connect our results with those of Kimball and Weil

(2009) involves using the formula (16) of their paper to derive that the coefficient of relative

prudence associated with risk-sensitive preferences is 2kcu′(c)− cu′′′(c)
u′′(c) . This coefficient, which

is informative about precautionary savings in two-period settings with infinitesimally small

risks, is increasing in k, and positive as soon as u′′′ > 0 and k ≥ 0. This is consistent with

the results discussed in the previous section.16

Bommier, Chassagnon and LeGrand (2012) focus on preferences that are monotone, but
15When k = 0, the property u′′′ ≥ 0 can also be related to aversion to downward risk, when considering risk

bearing on consumption at a single period of time, holding consumption in other periods constant. See, e.g.,
Menezes, Geiss and Tressler (1980), Chiu (2005), Denuit and Eeckhoudt (2010), or Ebert and Wiesen (2011).

16Note however that one cannot use the coefficient of relative prudence to infer conclusions on what occurs
with large risks. For example, with EZW specification, the coefficient of relative prudence is given by α(1+ 1

γ
),

thus increasing with risk aversion (α), while –as we mentioned above– Kimball and Weil (2009) proved that
risk aversion may negatively impact precautionary savings when risks are large.
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not necessarily recursive. Using dominance arguments, they prove that risk aversion increases

precautionary savings, in line with our current analysis. However, extending their approach

to an infinite horizon would involve considering non-recursive preferences and would raise

time-consistency issues.

Meanwhile, analyses in infinite-horizon settings are much rarer with only two theoretical

contributions, van der Ploeg (1993) and Weil (1993), that investigate the role of risk aversion.

As previously mentioned, van der Ploeg (1993) uses the expected utility representation (2)

with ψ(u) = 1−e−ku
k , while Weil (1993) relies on the recursive representation (3) with φ(u) =

1−e−λ((1−γ)u)
1

1−γ

λ . Furthermore, van der Ploeg (1993) assumes a quadratic instantaneous utility

function u, while Weil (1993) assumes that u(c) = c1−γ

1−γ . Both articles consider particular

income processes to derive closed form solutions. One may naturally wonder whether their

results could be extended to more general stochastic processes.

To start with, remark that when ψ(u) = 1−e−ku
k , the expected utility preferences repre-

sented by (2) also admit a recursive representation provided by:

Ut =

u(ct)− β
kt

log
(
Et[e

−ktUt+1 ]
)

, if k 6= 0,

u(ct) + βEt[Ut+1] , if k = 0.
(7)

where kt = kβt. Recursion (7) is very similar to the recursion (5) that defines risk-sensitive

preferences, the difference being that (7) assumes a degree of risk aversion kt that depends on

t. This dependence in t generates the “changing taste” feature underlined by Epstein and Zin

(1989).17 In technical terms, dealing with recursion (7) instead of recursion (5) has almost

no impact for our proof (one just needs to change k by kβt in all equations). The results of

Proposition 1 and Corollaries 1 and 2 thus extend to the preferences used in van der Ploeg

(1993), with in fact no need to restrict the analysis to quadratic instantaneous utilities or

specific income processes.

The preferences used by Weil (1993) are non-monotone and our proof strategy does not

apply to his setting. In fact, with Weil (1993)’s preferences the positive relation between

risk aversion and precautionary savings is obtained for some specific stochastically monotone

income processes (such as those considered in Weil’s paper) but does not hold for others. The

following section provides an example where the relation does not hold.
17Note that this problem of changing taste disappears if one sets β = 1, providing the multiplicative model

axiomatized in Bommier (2013). However, following such a route requires the infinite-horizon setting be
abandoned in order to avoid convergence issues.
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5 Numerical example

In this section, we present a numerical application that illustrates our main result and the

importance of the monotonicity property. We will indeed contrast the results obtained with

risk-sensitive, EZW and Weil (1993)’s preferences. All three cases will rely on the same income

process and on the same preferences over deterministic prospects.

Preference parameters

γ β

2 0.96

Income parameters at dates 0 and 1

y0 y1,l y1,h

20.0 0.1 0.5

Income parameters at dates t ≥ 2

θh θl ρ σ

20.0 10.0 0.95 0.1%

Table 1: Calibration

Income process. An agent is endowed with a certain income y0 > 0 at date 0. At date

1, there are two possible states labeled h and l, that each occurs with probability 1/2. The

state realization at date 1 fully determines the income in period 1 as well as the level of the

income process in the following periods. More precisely, at date 1 and in state κ = h, l, the

agent receives income y1,κ with y1,h ≥ y1,l > 0. The income at any future date t ≥ 2 is equal

to yt,κ = θκe
zt , where θκ is a scaling parameter with θh > θl, and (zt)t≥1 is an AR(1) process

driving income uncertainty after date 2. Formally, z1 = 0 and for all t ≥ 2, zt = ρzt−1 + σεt,

with εt
iid∼ N (0, 1) and ρ, σ ≥ 0.18 The uncertainty process (zt)t≥2 is independent of the state

κ = h, l and stochastically monotone. Moreover, since θh > θl, (yt,h)t≥2 dominates at the first

order (yt,l)t≥2, implying that the income process (yt)t≥0 is stochastically monotone. Finally,

agents are prevented from borrowing: st = 0 at all dates t.

Preferences. We consider recursive preferences, as in Section 2. We compare risk-sensitive

preferences, EZW preferences, and those of Weil (1993). The instantaneous utility function

u and the time-discount parameter β are the same for the three specifications with u(c) =

(1 − β) c
1−γ

1−γ for some constant 0 < γ 6= 1. The only difference comes from the risk aversion

18Note that the initial value z1, set to 0, does not impact the agents’ income in period 1, but only serves to
initialize the process zt.
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function φ that enters recursion (3). As already mentioned, for risk-sensitive preferences, we

consider φ(x) = 1−e−kx
k , with k ≥ 0. For EZW specification, we take φ(u) = ((1−γ)u)

1−α
1−γ

1−α , with

α ≥ γ, while Weil (1993)’s specification corresponds to φ(u) = 1−e−λ((1−γ)u)
1

1−γ

λ , with λ ≥ 0.

Calibration and numerical resolution. Our calibration is summarized in Table 1. The

gross interest rate is assumed to be constant and equal to R = 1.

Let us now describe our numerical solution method. We first need to solve the consumption-

saving problem at date 2 in both states h and l. The problem is similar in both states and

is a standard consumption-saving problem with stochastic income. The state-space is two-

dimensional and consists of the current value of the process z and the agent’s savings. We

discretize the autoregressive process (zt)t≥1 as a finite Markov chain using the Tauchen (1986)

method, with seven nodes and a multiple of the standard deviation equal to 3. We use a grid

with 20 non-evenly spaced points for savings. We evaluate the continuation utility at values

out of the grid using a simple linear interpolation. We then compute optimal policy and value

functions in states h and l using a policy function iteration algorithm. Once the problem is

solved for date 2, we deduce the optimal savings at date 0 by backward induction.19

Figure 1: Impact of the risk aversion parameter on savings
19Fortran codes for solving the program and reproducing the figures, as well as the related documentation,

are available at http://francois-le-grand.com/docs/codes/BL_PrecautionarySavings_codes.zip.
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Results. In Figure 1, we plot the optimal savings at date 0 as a function of the risk aversion

parameter, which is k for risk-sensitive preferences, α for EZW preferences, and λ for Weil

(1993)’s preferences (with a logarithmic scale on the x-axis). Note that risk-sensitive prefer-

ences with k = 0 and the EZW specification with α = γ provide the same amount of savings,

both models reducing then to the standard additive specification (1). However, as noted in

Section 2, the limit case λ = 0 of Weil (1993)’s preferences is different, and logically yields

another amount of savings.

With risk-sensitive preferences, savings are increasing with the risk aversion parameter k.

This illustrates our result of Proposition 1. However, there is no such a monotonic relationship

with EZW or Weil (1993)’s preferences. This example is an illustration that in absence of

monotonicity, Proposition 1 no longer holds.

6 Concluding remarks

The current paper addresses the question of precautionary savings, which is one of the most

studied issues in the theory of choice under uncertainty. We consider a general approach,

where uncertainty is not assumed to take any specific form, abandoning by the same token

any hope of deriving closed-form solutions. Despite this, we were able to prove the existence

of a positive relation between risk aversion and savings. Our approach emphasizes the role of

two fundamental assumptions: stochastic monotonicity of the income process and preference

monotonicity.

Intuitively, under the assumption of preference monotonicity, risk aversion can be seen

as the willingness to redistribute utility from good states of the world to bad states of the

world, or in other words, to opt for a strategy “closer” to the ones that would be chosen in bad

states. Moreover, due to the assumption of a stochastically monotone income process, low

future income realizations (which would be associated with greater savings levels in case of

perfect foresight) can be unambiguously considered as bad states. The combination of both

aspects leads to finding that risk aversion increases precautionary savings. This seems to be

a fairly intuitive result. However, for a number of reasons, such as the focus on the additively

separable expected utility model, the use of non-monotone preferences, or the difficulty in

deriving closed-form solutions, this fundamental relation between risk aversion and savings

has hitherto largely remained unclarified. This paper helps shed light on this relation, which

might be key to understanding heterogeneity in saving behaviors.
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Appendix

A Proof of Proposition 1

A.1 Mathematical preamble

All processes are defined on a probability space (Ω,F ,P), endowed with the filtration (Ft)t≥0.

For any random variable X, we denote its expectation, under P, by E[X] =
∫

ΩX(ω)dP(ω),

and its variance, under P, V [X] = E[X2] − E[X]2 –when they exist. The covariance under

P between two random variables X and Y is denoted by cov(X,Y ) = E[XY ] − E[X]E[Y ],

when it exists. Let L be an a P−almost surely non-negative random variable such that

E[L] = 1. The function Q : F → R, defined for any A ∈ F by Q(A) =
∫
ω∈A L(ω)dP(ω) is a

probability measure. The expectation underQ denoted by EQ[·], when it exists, verifies for any

random variable X: EQ[X] = E[LX]. We also define (when they exist) the variance and the

covariance under Q: V Q[X] = E[LX2]−E[LX]2 and covQ(X,Y ) = E[LXY ]−E[LX]E[LY ].

The notations are straightforward to extend for conditional moments.

The proof will utilize a property of conditional comonotonicity and some significant related

results. Our presentation, below, is taken from Jouini and Napp (2004). Let G be a sub-sigma

algebra of F . We start by characterizing the comonotonicity conditionally to G.

Definition 1 (Comonotonicity conditional to G) Two random variables X and Y de-

fined on (Ω,F ,P) are said to be comonotonic conditionally to G if and only if there exist

a random variable ξ and two functions f : Ω × R → R and g : Ω × R → R such that:

(i) f(., x) and g(., x) are G-measurable; (ii) f(ω, .) and g(ω, .) are non-decreasing; and (iii)

(X,Y ) = (f(ω, ξ), g(ω, ξ)) almost surely.

The intuition of the above definition is straightforward: X and Y are comonotonic condi-

tionally to G if their “restrictions” to G are comonotononic. We now turn to the definition of

conditional comonotonicity for processes.

Definition 2 (Conditional comonotonicity) Two adapted random processes (Xt) and (Zt)

defined on (Ω,F , (Ft)t≥0,P) are said to be conditionally comonotonic if, for t ≥ 0, the random

variables Xt+1 and Zt+1 are comonotonic conditionally to Ft.

Conditional comonotonicity generalizes the concept of comonotonicity to stochastic processes.

We conclude this section with a useful result:

Proposition 2 (Jouini and Napp, 2004) Let X and Y be two random variables on (Ω,F ,P).

If X and Y are comonotonic conditionally to G, then covQG (X,Y ) ≥ 0 for all probability mea-

sures Q absolutely continuous with respect to P.
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In the remainder, we will say that two random variables X and Y are anticomonotonic

when X and −Y are comonotonic.

A.2 Comonotonicity properties

As a first step in the proof of Proposition 1, we establish some comonotonicity properties that

relate income, consumption and continuation utilities.

The program (6) of the agent can be expressed as follows:

V k
t (wt, y

t) = max
st≤st<yt+wt

u(yt − st + wt)−
β

k
logEt

[
e−kV

k
t+1(Rt+1st,yt+1)

]
, (8)

s.t. wt+1 = Rt+1st,

where Et[·] is the expectation conditional on Ft. We define W k
t by:

W k
t (wkt , y

t)=−kV k
t (wkt , y

t)= min
st≤st<yt+wt

−ku(yt − st + wkt ) + β logEte
Wk
t+1(Rt+1st,yt+1). (9)

To derive our result, we need to differentiate the value function. Following standard

arguments of dynamic programming, we can show that since u is increasing and concave, so is

the value function. Moreover, since u is assumed to be continuously derivable, so is the value

function, as proved by Benveniste and Sheinkman (1979).20 We will therefore denote by W k
t,w

and W k
t,k the derivatives of W k

t with respect to wt and k respectively. We respectively denote

by ckt and skt the optimal consumption and savings of an agent maximizing (8) endowed with

the risk aversion parameter k. The strict concavity of u guarantees the uniqueness of skt . The

first-order condition provides:

ku′(ckt ) ≥ −βRt+1

Et

[
W k
t+1,w(wkt+1, y

t+1)eW
k
t+1(wkt+1,y

t+1)
]

Et

[
eW

k
t+1(wkt+1,y

t+1)
] , (10)

where equality holds if skt > st. The envelop theorem yields the following equalities (which

are valid whether the constraint skt ≥ st is binding or not):

W k
t,w(wkt , y

t) = −ku′(yt − skt + wkt ) = −ku′(ckt ), (11)

W k
t,k(w

k
t , y

t) = −u(ckt ) + βEt

W k
t+1,k

eW
k
t+1(wkt+1,y

t+1)

Et

[
eW

k
t+1(wkt+1,y

t+1)
]
 . (12)

20Stokey and Lucas (1989, Theorem 4.11) also provide a proof of the differentiability of the value function
in a slightly more general framework.
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Note that as a corollary of the continuous differentiability of the value function, the consump-

tion level and the saving choices are continuous in k. We now state the following lemma.

Lemma 1 (Comonotonicity of income, consumption and continuation utility) In the

setup of Proposition 1, at any date t ≥ 0, the optimal consumption process (ckt )t≥0, the income

process (yt)t≥0 and the continuation utility process (V k
t )t≥0 are conditionally comonotonic.

Proof. We prove the result assuming that there is a finite T ∈ N such that income in periods

after T is deterministic. Since T can be any finite integer, and β < 1, a continuity argument

implies that the result extends to T =∞.
We prove by reverse induction on t that (i) ckt and yt are comonotonic conditionally to

Ft−1 and that (ii) yt and W k
t are anticomonotonic conditionally to Ft−1. At date t = T ,

there is no remaining uncertainty. Conditionally to the filtration FT−1, and in particular for

a given history of income (yt)0≤t≤T−1 up to date T − 1, let us consider two realizations yT
and y′T of yT (at date T ) such that yT > y′T . Due to the stochastic monotonicity, we know

that yT+τ ≥ y′T+τ for any τ > 0. Credit constraints being non-increasing in past income

realizations, the (intertemporal) budget set when receiving yT is therefore larger than the

one obtained when receiving y′T . The consumption profile (cT+τ )τ≥0, chosen when receiving

yT is thus revealed preferred to the consumption profile (c′T+τ )τ≥0 chosen when receiving y′T .

Assume that cT < c′T . Since (cT+τ )τ≥0 is revealed preferred to (c′T+τ )τ≥0, there must be at

least one τ for which cT+τ > c′T+τ . Moreover since the borrowing limit st(yt) is non-increasing

in yt, the borrowing constraint at time T cannot be binding when choosing cT . We know that

u′(c′T ) ≥ βτ (
∏τ
k=1RT+k)u

′(c′T+τ ), otherwise it would be optimal to decrease consumption c′T
by a small amount to increase c′T+τ . Since cT ≤ c′T implies u′(cT ) ≥ u′(c′T ) and cT+τ > c′T+τ

implies that u′(c′T+τ ) > u′(cT+τ ), we obtain u′(cT ) > βτ (
∏τ
k=1RT+k)u

′(cT+τ ), contradict-

ing the optimality of (cT+τ )τ≥0. We deduce that cT ≥ c′T . We conclude that ckT and yT

are comonotonic conditionally to FT−1. Since W k
T = −k

∑∞
τ=0 β

τu(ckt+τ ) (no uncertainty is

left after T ) and u increasing, we can also conclude that yT and W k
T are anticomonotonic

conditionally to FT−1, and thus that yT and V k
T are comonotonic.

We have shown that points (i) and (ii) hold for t = T . We now proceed by induction

showing that if they hold for 0 < t ≤ T , they also hold for t − 1. When the borrowing

constraint does not bind at time t− 1, the Euler equation (10) together with (11) implies:

u′(ckt−1) = (βRt)Et−1

[
u′(ckt )

eW
k
t (wkt ,y

t)

Et−1[eW
k
t (wkt ,y

t)]

]
. (13)

Using the induction hypothesis, we know that u′(ckt )
eW

k
t (wkt ,y

t)

Et−1[eW
k
t (wkt ,y

t)]
and yt are anticomonotonic

conditionally to Ft−1. Since the income process is stochastically monotone, we deduce that
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u′(ckt−1) is non-increasing with yt−1, meaning that ckt−1 and yt−1 are comonotonic conditionally

to Ft−2. Assumptions on the income process and borrowing constraints, and the definition

(9) of W k
t−1, imply that W k

t−1 is decreasing with yt−1. The induction hypothesis and the

comonotonicity of ckt−1 and yt−1 conditionally to Ft−1 allow us to conclude that W k
t−1 and

yt−1 are anticomonotonic conditionally to Ft−2, and thus that yt−1 and V k
t−1 are comonotonic.

When borrowing constraints bind, denote by y
t−1

the cut-off value of yt−1 below which

the Euler equation does not hold. For any realization of yt−1 below y
t−1

, the borrowing

constraint at date t− 1 binds: ckt−1 varies exactly as yt−1. Therefore, ckt−1, yt−1, and V k
T are

also comonotonic conditionally to Ft−2.

A.3 Increasing risk aversion

To complete the proof of Proposition 1, we consider the impact of an increase in risk aversion.

Ideally, we would wish to differentiate the Euler equation with respect to k and show that
∂skt
∂k > 0. However, this supposes that k 7→ skt is differentiable, or equivalently that w 7→
W k
t (w, yt) is twice differentiable. Unfortunately, this is not trivial to prove in our setup and

standard arguments as in Araujo (1991) or in Santos (1991) do not apply. We will therefore

use a method that avoids differentiation of the savings function.

Consider two agents endowed with risk aversion parameters k′ > k. We distinguish two

cases, depending on whether the Euler equation for k holds with equality or not.

First case: Euler equations (10) and (13) hold with equality for agent k. Euler

equation for agent k′ may not hold with equality. Dropping the dependence in yt, we deduce

from Euler equation (10) for k and k′, after some rearrangements, that:

k′(u′(ck
′
t )− u′(ckt ))
βRt+1

+
Et

[
W k′
t+1,w(wk

′
t+1)eW

k′
t+1(wk

′
t+1)
]

Et

[
eW

k′
t+1(wk

′
t+1)
] −

Et

[
W k′
t+1,w(wkt+1)eW

k′
t+1(wkt+1)

]
Et

[
eW

k′
t+1(wkt+1)

] ≥

(k − k′)u′(ckt )
βRt+1

−
Et

[
W k′
t+1,w(wkt+1)eW

k′
t+1(wkt+1)

]
Et

[
eW

k′
t+1(wkt+1)

] +
Et

[
W k
t+1,w(wkt+1)eW

k
t+1(wkt+1)

]
Et

[
eW

k
t+1(wkt+1)

] .

(14)

We proceed in two steps to show that (14) implies that sk′t ≥ skt when k′ is close to k. In

the first one, we prove that the upper line of (14) has the same sign as sk′t − skt , and in the

second one that the bottom line of (14) is positive.
Let us start with the upper line of (14). Since u is concave and k′ > 0, the term k′(u′(ck

′
t )−
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u′(ckt )) has the same sign as sk′t − skt . Moreover, we have:

Et
[
W k′
t+1,w(w

k′
t+1)e

Wk′
t+1(w

k′
t+1)

]
Et
[
eW

k′
t+1(w

k′
t+1)

] −
Et
[
W k′
t+1,w(w

k
t+1)e

Wk′
t+1(w

k
t+1)

]
Et
[
eW

k′
t+1(w

k
t+1)

] =

Et
[(
W k′
t+1,w(w

k′
t )−W k′

t+1,w(w
k
t )
)
eW

k′
t+1(w

k′
t+1)

]
Et
[
eW

k′
t+1(w

k′
t+1)

] +
(
J(wk

′
t+1)− J(wkt+1)

)
,

where J is the function: w → J(w) = Et

W k′
t+1,w(wkt ) e

Wk′
t+1(w)

Et

[
e
Wk′
t+1(w)

]
. Since w 7→ W k′

t+1,w(w)

is increasing (indeed V k′
t+1 = −W k′

t+1/k
′ is concave), W k′

t+1,w(wk
′
t ) −W k′

t+1,w(wkt ) has the sign

of wk′t − wkt and therefore of sk′t − skt . Moreover, W k′
t+1 being continuously derivable, we can

compute:

∂J(w)

∂w
= cov

Qk′
t (W k′

t+1,w(wkt ),W k′
t+1,w(w)), (15)

where the probability Qk′ is defined by its Radon-Nikodym derivative: dQk′
dP = e

Wk′
t+1(w)

Et

[
e
Wk′
t+1(w)

] .
The term (15) is positive when w = wkt (the covariance is then a variance) and therefore is,

by continuity, also positive for any w close to wkt . Since k 7→ skt is continuous, we obtain that

the term (15) is positive whenever k′ is close to k. This implies that J(wk
′
t+1) − J(wkt+1) has

also the same sign as sk′t − skt , as soon as k′ is close to k.

We now focus on the bottom line of (14). The bottom line of (14) can be rewritten as

h(k, skt ) − h(k′, skt ), where h : (k, skt ) 7→
ku′(ckt )
βRt+1

+
Et

[
Wk
t+1,w(wkt+1)e

Wk
t+1(w

k
t+1)

]
Et

[
e
Wk
t+1(w

k
t+1)

] . When k′ > k

remains close to k, the sign of h(k, skt )− h(k′, skt ) is the opposite of the one of ∂h(k,skt )
∂k

∣∣∣
skt=cst

.

Since (11) implies that
∂Wk

t+1,w

∂k

∣∣∣∣
skt

= −u′(ckt+1), we have:

∂EQk
t

[
W k
t+1,w

]
∂k

∣∣∣∣∣
skt

=−EQk
t

[
u′(ckt+1)

]
+ EQk

t

[
W k
t+1,wW

k
t+1,k

]
− EQk

t

[
W k
t+1,w

]
EQk
t

[
W k
t+1,k

]
,

where the probability Qk is defined similarly to Qk′ . Using (10) and (11) we get:

∂h(k, skt )

∂k

∣∣∣∣
skt

= −kβRt+1 cov
Qk
t (u′(ckt+1),W k

t+1,k). (16)
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Observe now that, from equation (12), we can derive by iteration:

W k
t+1,k = −

∞∑
τ=1

βτ−1Et+1

 u(ckt+τ )e
∑τ
j=2W

k
t+j∏τ

j=2Et+j−1

[
eW

k
t+j

]
 = −

∞∑
τ=1

βτ−1E
Q̂t+τ
t+1

[
u(ckt+τ )

]
, (17)

where for any τ ≥ 1, the probability Q̂t+τ is defined by its Radon-Nikodym derivative: dQ̂t+τ
dP =

e
∑τ
j=2W

k
t+j∏τ

j=2 Et+j−1

[
e
Wk
t+j

] . Using this notation, we finally obtain:

∂h(k, skt )

∂k

∣∣∣∣
skt

= kβRt+1

∞∑
τ=1

βτ−1cov
Q̂t+τ
t

(
u′(ckt+1), u(ckt+τ )

)
. (18)

Lemma 1 implies that (ckt )t≥0 and (yt)t≥0 are conditionally comonotonic. Proposition 2 implies

then that covQ̂t+τt

(
u′(ckt+1), u(ckt+τ )

)
< 0, or using (18), that ∂h(k,skt )

∂k

∣∣∣
skt
< 0. We deduce that

for k′ > k close to k, the the bottom line of (14) is positive.

In this case, we can therefore conclude that sk′t ≥ skt , whenever k′ ≥ k is close to k.

Second case: Euler equations (10) and (13) hold with strict inequality for agent

k. We have skt = st. The budget constraint implies that sk′t ≥ st = skt .

Conclusion. We have shown that k 7→ skt is locally non-decreasing for any k ≥ 0, which

implies that k 7→ skt is globally non-decreasing on R+. This concludes the proof.
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