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Abstract

Purpose. We determine an optimal injection pattern for anti-vascular endothelial
growth factor (VEGF) and for the combination of anti-VEGF and unlicensed dendritic
cells.

Methods. We rely on the mathematical model of Soto-Ortiz and Finley [45]
for the interactions between the tumor growth, angiogenesis and immune system
reactions. Our optimization algorithm belongs to the class of Monte-Carlo tree search
algorithms. The objective consists in finding the minimal total drug doses for which
an injection pattern yields tumor eradication.

Results. Our results are twofold. First, optimized injection protocols enable
to significantly reduce the total drug dose for tumor elimination. For instance, for
an early diagnosis date, a total dose equal to 58% of the standard anti-VEGF dose
enables to eliminate the tumor. In the case of drug combination, associating 25%
of the total standard anti-VEGF dose to 10% of the dendritic cell total standard
dose eradicates tumor. Our second result is that administering a dose equal to the
maximal standard dose allows for later diagnosis date compared to standard protocol.
For instance, in the case of anti-VEGF injection, the optimal protocol postpones the
maximal diagnosis date by more than one month.

Conclusions. Overall, our optimization based on artificial intelligence delivers
significant gains in total drug administration or in the length of the therapeutic
window. Our method is flexible and could be adapted to other drug combinations.
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1 Introduction

Angiogenesis is the process of formation of new blood vessels from preexisting ones. It
plays a crucial role in both physiological and pathological processes [24]. Indeed, angio-
genesis is required on the one side for development of embryos and wound healing, and on
the other side for tumor growth, in particular in carcinoma [46]. The role of angiogenesis
for tumor growth has been initially hypothesized by Folkmann in the 70s (see [15] for the
original paper and [16, 17] for later reviews) and demonstrated in a great number of studies
(|25, 26, 35] among many others).

The vascular endothelial growth factor (VEGF, henceforth) is a signal protein playing
a key role in the regulation of angiogenesis and matters for the growth of any type of
blood vessels and in particular for the vascularization of cancer tumors [14, 37, 43]. The
development of the tumor implies that some cells of the tumor may be in hypoxia due to
a large distance to existing vascularization. This hypoxia fosters the production of VEGF,
yielding high levels of circulating VEGF for a number of cancer patients [10]. This high
level of VEGF activates the receptors of endothelial cell growth factors and ultimately
leads to new blood vessels, tumor vascularization, and tumor growth [11].

VEGEF plays a dual role in tumor proliferation. Besides its role in tumor angiogenesis,
VEGF is also an immunosuppressive factor that dampens the body immune response,
through two main channels [3, 13, 34|. First, T cells, which are suspected to play a major
role in the immune response to cancer tumor |29, 33|, are negatively affected by VEGF
[48]. Second, high levels of circulating VEGF — as it is the case in tumor environments —
also inhibit the immune action of dendritic cells [18-20, 32, 36].

Administering an anti-VEGF therapy will have a twofold impact on tumor growth
[42]. On the one hand, an anti-angiogenic effect will perturb the new vasculature in tu-
mor growth. On the other hand, dampening the immunosuppressive effect will favor the
cytotoxic body response. For these two reasons, cancer therapeutic vaccines based on
anti-VEGEF are currently developed and investigated in clinical trials [22].

Anti-VEGF effects can be reinforced by immunotherapy and the injection of immune
cells that can be natural or genetically modified. Typical examples of such cells are den-
dritic cells (DC). DC vaccine consists in re-injecting patient’s dendritic cells after cell
multiplication and activation with antigens of a specific tumor [40, 41]. The vaccines with
DC injections, when used as a monotherapy, seem to face limitations [4], even though DC
vaccines have benefited — and are benefiting — from significant advances [21]. One of the
most promising roadmap seems to combine DC vaccines with other treatments, such as
chemotherapy [12] among other options. In this respect, combining anti-VEGF with DC



vaccines, even though unexplored to a large extent, seems to be a promising route.

Soto-Ortiz and Finley [45] have developed a mathematical model to test in-silico the
clinical benefits of the combination of anti-VEGF and DC injections. In-silico trials deliver
two main results. First, injecting anti-VEGF only leads to tumor elimination under the
condition that the protocol starts in a specific time window, while injecting DC only never
yields tumor eradication. This result is in line with the clinical trial outcomes showing
the failure of immunotherapy as monotherapy. Second, combining immunotherapy with
anti-VEGF, and in particular proceeding to DC injections following anti-VEGF injections
leads to tumor elimination and more importantly, the therapeutic window is significantly
broader than with sole anti-VEGF injections. This last result indicates that a synergy
between anti-VEGF and DC injections favors tumor elimination.

The whole analysis in [45] is based on a fixed protocol for anti-VEGF and DC injections.
In the present paper, we use artificial intelligence methods to determine optimal protocols
for anti-VEGF only and for the combination of anti-VEGF and DC. Our optimization
embeds constraints that account for possible side effects of drug treatment (see |2, 31|
for reviews of side effects of anti-angiogenic therapies). We base our constraints on the
benchmark protocols for DC and anti-VEGF injections. In particular, if we allow for dose
and schedule variations in the optimization, the daily and total doses should not exceed
their benchmark counterpart, while the time interval between two injections cannot be
shorter than in the benchmark protocols.

Regarding sole anti-VEGF injections, our results are twofold. First, we show that if we
allow for the same total anti-VEGF dose, as the benchmark protocol, optimizing schedule
and daily dosing enables to increase the therapeutic window by 39 days. In other words, an
optimized protocol enables to postpone the tumor discovery by 39 days, which corresponds
to a tumor diameter increase of 1.5 centimeters. Second, for any diagnosis date belonging
to the therapeutic window of the standard protocol, our optimization enables to diminish
the total anti-VEGF quantity required for tumor eradication. For instance, the optimized
protocol leads to tumor elimination with as few as 58% of the total standard dose when the
tumor is detected very early. Overall, optimizing anti-VEGF administration offers either
a broader therapeutic window and possibly a later diagnosis date, or a sizable reduction
in the total drug dose required for tumor elimination.

Regarding the drug combination, the optimized protocol similarly offers a sizable reduc-
tion in total drug dosing. Indeed, tumor elimination can be reached with the combination
of 25% of total anti-VEGF dose and of 10% of total DC dose. Optimizing the administra-
tion of drug combination significantly diminishes drug doses required for eliminating the

tumor.



Finally, our contribution is also methodological since we illustrate the possibilities of
importing artificial intelligence techniques in mathematical immunotherapy. More pre-
cisely, the algorithms we use belong to the family of Monte-Carlo Tree Search (MCTS,
henceforth) algorithms, that have been popularized by their application in AlphaGo — the
software that has defeated a number of Go champions in 2016-2017. See [6] for survey on
MCTS methods, [44] for its application to Go software and [27| for applications in oncology.
Other optimizations have been performed in immunotherapy. Optimal control theory has
been used to determine optimal dosage [8, 9|, but, contrary to our method, this approach
requires the underlying mathematical model to be simplified. Moreover, some authors,
as in [38| for instance, have relied on genetic algorithms to determine the optimal timing
of injections, while the number and the dosage of the injections are fixed. Our approach
enables to simultaneously optimize on the timing, the number and the dosage of injec-
tions. Finally, mathematical models have also been used for personalizing immunotherapy

protocols (see [30] and [1] for a review).

2 Materials and methods

2.1 Model

The model we rely on stems from Soto-Ortiz and Finley [45]. This model simultaneously
takes into account at the tumor level, angiogenesis, the body immune response and the
immunosuppressive effects of the tumor. It builds on Robertson-Tessi and coauthors [39]
for the interactions between tumor and the immune system, and on Cameron and Davis
[7] for angiogenesis modeling.

The model mechanisms for the tumor growth and the immune system reactions in [39]
can be summarized as follows. The tumor growth follows an hybrid dynamics between an
exponential and a power law. Unlicensed DC collect antigen produced by tumor cells.!
Once licensed, DC interact with three types of T cells: effector CD8+ T cells, which kill
tumor cells; regulatory T cells (Tregs), which are the heart of the immunosuppressive
effects; and helper T cells, which license DC and might be converted in Tregs. Tregs
have a twofold immunosuppressive role. First, they directly harm the tumor cytotoxic
activity of effector T cells. Second, they also produce suppressive cytokines TGF-/5 and
IL-10 — which are also produced by tumor cells. These two cytokines suppress the activity
of effector T cells.? Overall, the evolution of the tumor is determined by two competing

'We follow the terminology of [45] and immature DC are said to be unlicensed. Symmetrically, mature
DC are said to be licensed.
2For further detail about immunosuppression, see [47] for the role of Tregs, [23] for the role of TGF-3



forces, which are on one side the cytotoxic activities of effector T cells and on the other
side, the immunosuppressive effects of T-regs and cytokines. Three possible regimes are
possible for tumor evolution: tumor suppression, unbounded tumor growth, and control
where the tumor size remains constant, its growth being balanced by cytotoxic effects, net
of immunosuppressive activity. A key parameter for the determination of the final tumor
regime is the tumor’s antigenicity, which characterizes the intensity in production of the
antigen by the tumor and the magnitude of the response of the immune system to the
antigen.

The angiogenesis modeling, that buils on Cameron and Davis [7], can be summed up
as follows. The tumor growth positively depends on the length of tumor vasculature, and
therefore on angiogenesis. Angiogenesis itself depends on three growth factors: VEGF,
Angiopoietin-1 (Ang-1) and -2 (Ang-2). The primary growth factor is VEGF, whose role
on endothelial cells has been explained in Introduction. Ang-1 contributes to mature vas-
culature by reinforcing connections between endothelial cells. Ang-2 is a natural antagonist
to Ang-1 and normally contributes to vasculature regression. However, Ang-2 effects are
reversed in presence of VEGF and Ang-2 then contributes to vessel sprouting. VEGF has
therefore both a direct and an indirect effect in angiogenesis. Finally, in addition to the
angiogenic effects of VEGF, Soto-Ortiz and Finley [45] also model its immunosuppressive
effect — which is absent of Robertson-Tessi and coauthors [39] — similarly to the one of
TGF-5.

2.2 Simulations

We use the same calibration as [45], for parameters and initial values. Two parameter
values deserve particular attention: antigenicity and speed of tumor growth. We set the
value of the tumor antigenicity parameter to 1 x 107°, which is the lowest value considered
in [45]. This value corresponds to a low anti-tumor immune response. The tumor growth
parameter is set to 0.69 (day~'), which corresponds to a fast replication speed of tumor
cells, and therefore to an aggressive cancer. This parameter can be set to any value in the
range [0.1 — 1] (in day™') and the larger the parameter value, the faster the replication of
tumor cells. For the very low antigenicity parameter value that we set equal to 1 x 1075,
values of tumor growth higher than 0.5 unambiguously leads to an unbounded tumor
growth in absence of treatment. As a result, picking up a very low antigenicity and a
fast tumor growth corresponds to a ‘“realistic worst-case scenario” (as stated in [45]) for

investigating the effectiveness of possible anti-tumor treatments and their combination.

and [28] for the role of IL-10.



Following [45], we consider two standard protocols, one for anti-VEGF — which typically
consists of bevacizumab — and another one for unlicensed DC injections. The standard anti-
VEGF protocol consists of 6 biweekly injections of 7 x 10® nanograms of anti-VEGF. This
protocol is in line with phase-2 clinical trials involving bevacizumab [49]. The standard DC
protocol consists of 15 biweekly injections of 5 x 10°% unlicensed DC. This DC protocol is
also consistent with typical DC regimen [5]. We will henceforth refer to these two protocols
as standard protocols, while their schedule will be referred to as standard schedules. We
will additionally consider variations around these standard protocols, in which we will
prune the total dose and consider a total dose equal to % of the standard dose. Hence,
these pruned protocols follow a standard schedule and the only difference with standard
protocols is that they are stopped after a total dose of 2% of the standard total dose is
reached. For instance, if the maximal dose is 80% of the standard dose, the protocol will
consist of 12 biweekly injections of 5 x 10® unlicensed DC. We will refer to these protocols
as pruned standard protocols.

We simulate the mathematical model over a time window of 4,000 days. All computa-
tions are implemented in C++. The evaluation of the protocol efficacy is solely based on
the number of tumor cells at day 4,000. A high efficacy corresponds to a small number
of tumor cells at day 4,000. In line with [45], we will additionally say that a protocol is
successful if the number of tumor cells at day 4,000 is strictly smaller than one. In that

case, the tumor will be considered to be eradicated.?

2.3 Optimization

The optimization aims at determining protocols which offer the best efficacy and there-
fore yield the smallest number of tumor cells at day 4,000. Optimal protocols will be
parametrized by the diagnosis date and the maximal total drug quantity. The diagnosis
date can be interpreted at the date at which the tumor is discovered. In other words, the
diagnosis date is a lower bound on the first injection date. The main reason motivating the
choice of the diagnosis date rather the starting date is that it simplifies the interpretation
of the optimal protocol. Consider an optimal protocol characterized by a diagnosis date t
and a given total drug dose D. By construction, all protocols with the same diagnosis date
t but a total dose higher than D will lead to a number of tumor cells smaller than with
the initial protocol. Dually, all protocols with the same total dose D but a diagnosis date

3The tumor dynamics is continuous, such that the number of tumor cells is not restricted to be a natural
number. In particular, it might be the case that in some simulations the number of cells drops below 1 at
some date, while the number of cells at day 4,000 is above one, meaning a protocol failure. We address
this question in Section 2 of the Appendix.



earlier than ¢ will also lead a number of tumor cells at day 4,000 smaller than with the ini-
tial protocol. As shown in [45], the latter interpretation is not valid when we parametrize
protocol by the standard definition of starting date.

The optimization will consist in choosing for a given diagnosis date and a given maximal
total drug dose, the injection schedule (injection dates and doses) that minimizes the
number of tumor cells at day 4,000. Additionally, all optimizations are subject to a set
of constraints that aim at limiting drug side effects. Loosely speaking, these constraints
prevent injections from being more frequent or more concentrated than in the standard
schedules and can be formulated as follows:

C.1 the delay between two injections cannot be smaller than 14 days, which is the time

interval between two injections in the standard protocol;

C.2 the doses per injection cannot exceed the daily doses in the standard protocol (7 x 108
nanograms for anti-VEGF, 5 x 10° cells for unlicensed DC).

Finally, our optimization relies on a MCTS algorithm, adapted from the one used in [27]
for chemotherapy. Since the optimization bears upon schedules and quantities, the dimen-
sionality of the optimization exercise is too high for the optimization to be conducted with
standard techniques, such as dynamic programming. Using artificial intelligence techniques
allows us to overcome the curse of dimensionality and to compute optimal protocols. We
conduct two separate optimization exercises, one for sole anti-VEGF injections and another
one for the combination of anti-VEGF and unlicensed DC.

A detailed presentation of our algorithm, though in a different framework, can be found
in [27]. The mechanics of the algorithm can be summarized as follows. We start with a
patient with a tumor of a given mass. The evolution of this patient is simulated using the
PK/PD model until a decision can be made — at each day — when the algorithm is required
to determine the optimal treatment dose. The dose is typically a continuous variable lying
in a compact interval of the form [0, d,ax], where 0 corresponds to no treatment and dyax to
the maximum tolerated dose. The algorithm considers a discretization of the dosing space,
with typically 10 to 20 possible treatment doses (including obviously no-treatment and the
maximal dose). The algorithm then computes the best dose among these discrete alterna-
tives. To do so, it associates to each possible dose a fictive patient, which is an exact copy
of the current patient to which the treatment dose under consideration has been adminis-
tered. These fictive patients are then simulated applying a default continuation treatment
policy (see below for further details about this simulation). Finally, the recommended dose
is the one corresponding to the patient with the most favorable outcome after simulation
— typically, the smallest tumor mass. The recommended dose is then administered to the
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actual patient, which is simulated to the next day. The algorithm ends when it reaches the
final horizon date. The tricky part of the algorithm is the choice of default continuation
treatment policy. In this paper, the default policy is a standard protocol with starting
dates (for anti-VEGF and DC when relevant) determined by a genetic algorithm.

We now discuss the two separate optimization exercises.

Optimal anti-VEGF protocols. As discussed previously, any optimal anti-VEGF pro-
tocol is parametrized by a diagnosis date and a total anti-VEGF quantity. More precisely,
every optimal anti-VEGF protocol will be denoted AV (¢, av) where:

e ¢ € (0,4000) in days is the diagnosis date;

e av € [0%, 100%)] characterizes the maximal total dose of anti-VEGF, relatively to the

standard total dose equal to 4.2 x 10 nanograms.

In other words — and in addition to constraints C.1 and C.2 given above —, in a protocol
AV (t,av), as the tumor is diagnosed at day t, the treatment cannot start before day ¢, and
the total anti-VEGF dose cannot exceed av% of the total standard dose, equal to 4.2 x 10°
nanograms.

We report in Figure 1 examples of standard and optimized protocols. The two bottom
panels represent the injection pattern as a function of time for the standard and optimal
protocols respectively. The top panel plots the corresponding evolution of the number
of tumor cells in the case of the two protocols. The diagnosis date is day 580 and the
total injection is 100% of standard total dose. With our notation, the optimized protocol
therefore corresponds to AV (580, 100%).

In Figure 1, we can observe the 6 identical biweekly injections of the standard protocol
(middle panel), that implies the tumor size evolution of the top panel (gray line). The final
tumor size at day 4,000 amounts approximately to 340 cells. This number of tumor cells
exceeding the one-cell threshold, the standard protocol is considered non successful. This is
in line with the finding of [45], who show that day 580 is outside of the therapeutic window.
The optimized protocol AV (580,100%) corresponds to a very different injection pattern
that is displayed in the bottom panel. If the two first injections are the same (for both
the timing and the quantity) as in the standard protocol, the following ones are different.
The optimal protocol tends to diminish per-injection quantities but to increase the number
of injections. Unsurprisingly, the constraint bearing on the total anti-VEGF quantity is
binding, such that the total drug quantity is identical in both protocols. Besides having a
proper injection schedule, the optimized protocol outcome greatly differs from the standard
one. Indeed, the tumor size at day 4,000 is approximately equal to 0.1 cell. This quantity
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Figure 1: Example of standard and optimal anti-VEGF protocols for a
starting date at day 580 and 100% of the total standard dose.

The top panel plots the evolution of tumor cells over the protocol pe-
riod for the standard protocol (in gray) and the optimized protocol
AV (580,100%) (in black).

The middle panel plots the injection pattern for the standard protocol,
while the bottom panel plots the injection pattern for the optimized one.



being below the one-cell threshold, the protocol can be considered successful. With the
optimal protocol, the tumor is eradicated, while this is not the case with the standard
protocol.

Optimal combined protocols. We now discuss optimal protocols in the case of a combi-
nation of anti-VEGF and unlicensed DC. Every optimal combined protocol is parametrized
by three variables: the diagnosis date, the total anti-VEGF quantity, and the total DC
quantity. Of note, the two first variables are exactly the same as in the case of sole anti-
VEGF injections. This reflects the fact that the protocol now embeds injections of both
anti-VEGF and unlicensed DC. More precisely, every optimal combination protocol will
be denoted C'(t, av, dc) where:

e t € (0,4000) and av € [0%,100%)] have the exact same meaning as for the sole
anti-VEGF injection;

e dc € [0%,100%)] characterizes the total dose of unlicensed DC, relatively to the
standard total dose, amounting to 7.5 x 107 cells;

In other words, in a protocol C(t, av, dc), the treatment is diagnosed at — and cannot start
before — day ¢, the total anti-VEGF dose cannot exceed av% of the total standard dose of
anti-VEGF and the total DC dose cannot exceed dc% of the total DC standard dose. Of
course, constraints C.1 and C.2 given above still apply. Finally, let us note that anti-VEGF
and DC injections are independent of each other and we do not impose any constraint in
the sequence of injections.

We report in Figure 2 an example of optimized protocol, which is C(0,30%, 15%),
starting at date 0, with 30% of the total standard dose of anti-VEGF and 15% for the dose
of DC. The injection patterns for DC and anti-VEGF as a function of time are plotted in
the two bottom panels. The top panel plots the corresponding evolution of the number of
tumor cells. We observe that the protocol involves a number of tumor cells at day 4,000
approximately equal to 2.5 x 1075, Consequently, this number being smaller than one, the
protocol can be considered to be successful and to yield tumor eradication.

3 Results

As seen in the example of Figure 1 for injection of anti-VEGF only, the optimized
protocol can possibly — for the same total drug quantity and the same diagnosis date —
yield tumor eradication, while it is not the case for the standard protocol. We now provide

10
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Figure 2: Example of an optimal combined protocol C(0,30%, 15%), for
a diagnosis date at day 0, 30% of the standard anti-VEGF dose and 15%
of the standard DC dose.

general results in the case both of anti-VEGF solely and of the combination of anti-VEGF
and DC.

Anti-VEGF protocols. Our main results for sole anti-VEGF injections are plotted in
Figure 3, where we represent the areas where optimal and standard protocols are success-
ful. More precisely, on the left hand-side panel 3a, we plot for any diagnosis date t, the
smallest total anti-VEGF dose av, for which an optimal protocol AV (t,av) (black line)
is successful and yields tumor eradication. Of note, we do not represent the actual final
number of tumor cells, and as in [45], we solely focus on whether protocols are successful or
not. For instance, the right-most point of Figure 3 for optimized protocols corresponds to
AV (580,100%) presented in Figure 1. Consistently with tumor size evolutions presented
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on the top panel of Figure 1, AV (580,100%) is successful, while it is not the case for
its standard counterpart. We also draw the same plot for “pruned” standard protocols.
The pruned standard protocols we consider are constructed such that the total dose is
the minimal dose for which the tumor is eradicated with a standard injection pattern.
Furthermore, in order to make both standard and optimal protocols more comparable, we
also use the convention of diagnosis date, instead of protocol starting date.* On the right
hand side panel 3b, we plot for each tumor diameter, the smallest total anti-VEGF dose
for which an optimal protocol with that dose yields tumor eradication. We do the same
plot for a pruned standard protocol constructed as before. We deduce panel 3b from panel
3a as follows. For any day, we compute the number of tumor cells at that day using the
mathematical model of the tumor evolution (without treatment) and we then deduce the

tumor diameter using a simple geometric formula.’
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Figure 3: Comparison of optimized and pruned standard protocols.

For every diagnosis date or every tumor size, we compute the smallest
total drug dose that yields tumor eradication with an optimized and a
standard protocol. In both graphs, the black curve refers to the optimal
protocols and the gray curve to standard protocols.

We can draw two main lessons from Figure 3. First, we observe that if tumor eradication

4There is therefore no contradiction with the results of [45], who report that starting the standard
protocol early does not yield tumor elimination. For early diagnosis dates in our graph, the injections in
the standard protocol will therefore start at a later date.

5The diameter of a tumor d is assumed to be related to the number of tumor cells, n, by the following

formula d ~ 2 x (£%) Y 3, where B = 108 (in cells/cubic centimeter) characterizes the density of the tumor

in tumor cells. The formula can be found in [45].
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can be achieved by a pruned standard protocol for a given diagnosis date, tumor eradication
can also be achieved by an optimal protocol with a smaller total anti-VEGF dose. The
gain in the total dose is approximately constant for all diagnosis dates, and amounts
approximately to 17% of the standard dose for early diagnosis and 20% for the latest ones.
Of note, for the sake of fairness of the comparison between both protocols, we have not
used the standard dose for the standard schedule, but the smallest share of the standard
dose that yields tumor eradication for a pruned standard protocol. For instance, for early
diagnosis dates, pruned standard protocols require at least 75% of the standard dose for
tumor eradication, while the optimized protocol only requires 58% of the total dose. For
the latest diagnosis dates (in which both protocols are still successful), the pruned standard
protocol requires 100% of the standard dose, while the optimized one only needs 80%.

The second lesson from Figure 3 is that for a given total drug dose, the optimized
protocol offers a later diagnosis date, or equivalently a larger tumor mass at the diagnosis.
However, the higher the total dose, the smaller the postponement of diagnosis dates. For
instance, for a 75% dose, the diagnosis date can be postponed by 172 days — or almost
6 months — from day 361 to day 533, while for the 100% dose, the diagnosis date can be
postponed by 39 days, from day 545 to day 584. The gain is also very sizable in terms of
tumor diameter at diagnosis. For a 75% dose, the tumor diameter at diagnosis must be
below 2.56 centimeters for the standard protocol, while it can be almost as large as 5.94
centimeters with the optimal protocol, which is more than twice larger. For a 100% dose,
the tumor diameter at diagnosis must be smaller than 6.29 centimeters with the standard
protocol, while it can reach 7.61 centimeters with an optimal protocol. Optimization
therefore offers a sizable increase in the tumor size at diagnosis.

We summarize all above results in Table 1.

Dose  Gain in diagnosis date Gain in tumor size (days)
75% 172 days 3.38 cm
100% 39 days 1.32 cm

Table 1: Gains in diagnosis length and tumor size when switching from
standard to optimal protocol, for two specific doses.

Optimal combined protocols. We now turn to the optimal combined protocols. In
this case, the dimensionality of the optimization problem is much larger than the one for
sole anti-VEGF protocols. Consequently, we determine for every pair of total drug dose
for anti-VEGF and DC, if we can find a successful protocol yielding tumor elimination. In
other words, for standard schedules, we seek two starting dates for the standard schedules

13



of both anti-VEGF and DC injections, such that the combined treatment yields tumor
elimination. For optimized protocols, for any given drug quantities av and dc, we look for
the optimal protocol C(0, av, dc) and check whether it yields to tumor elimination. We plot
our results on Figure 4. For instance, the gray square with 30% of standard anti-VEGF
dose and 15% of standard DC dose corresponds to the optimized protocol C(0,30%, 15%)
presented in Figure 2. Consistently with the tumor size evolution plotted on Figure 2, this

protocol is successful.
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Figure 4: Existence of protocols yielding tumor elimination for all pairs of
quantities of anti-VEGF and DC. Drug quantities vary between 0% and
100% of the total standard quantity with a step of 5% for each drug.

A gray plus (+) indicates that neither optimized nor standard schedule
yields tumor elimination. A gray square ([]) indicates that only optimized
protocol yields tumor elimination. A black times (x) indicates that both
optimized and standard protocols yield tumor elimination.

We can draw several conclusions from Figure 4. First, we recover part of our results for

sole anti-VEGF injections. Indeed, in line with our results for sole anti-VEGF injections
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(corresponding to a combined protocol with a zero DC dose), we observe that for the
standard schedule to yield tumor eradication, the total anti-VEGF dose must be greater
than 75% of the standard anti-VEGF quantity, while the optimized schedule is successful
as soon as the anti-VEGF dose is above 60% of the standard total dose. Second, we observe
that the optimization also enables to take advantage of the complementarity between DC
and anti-VEGF injections. An optimized protocol can eliminate tumor with only 25% of
standard anti-VEGF dose and 10% of total DC dose. In consequence, adding only a small
amount of DC with the proper optimized schedule enables to significantly reduce the dose
of anti-VEGF that is required. The 10% dose in DC enables to diminish the anti-VEGF
dose from 60% to 25% of the standard dose.
These results are summed up in Table 77.

Anti-VEGF dose
DC dose Optimal protocol Standard protocol
0% 60% 75%
10% 25% 60%

Table 2: Anti-VEGF dose needed for tumor elimination.

4 Discussion

Importing artificial intelligence techniques for optimization purposes in immunotherapy
has delivered two main outcomes. First, an optimized schedule allows for decreasing the
total drug use, both for sole anti-VEGF and for the combination of anti-VEGF and DC,
without impacting the overall outcome and tumor elimination. As a result, optimizing
the schedule may help contribute to reduce drug adverse effects by diminishing doses, as
well as making these immunotherapy treatments more affordable by decreasing the total
treatment cost. Second, the optimized schedule enables to yield tumor elimination, while
it would be too late or the tumor would be too large to do so for a standard schedule,
even with a full dose. As a consequence, the optimized schedule offer a longer therapeutic
window and makes tumor elimination possible for later diagnosis dates.

In this article, we have developed an algorithm based on the family of MCT'S algorithms.
Three main reasons have motivated our choice to work with such an algorithm. First, this
algorithm takes advantage of the sequential and finite time features of the problem at hand.
In particular, it allows us to handle a full-fledged PK/PD model without any simplification.
Second, the algorithm does not require an evaluation function that would be tricky to design
in the highly non-linear framework we work with. Finally, our algorithm offers a very high
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degree of flexibility. This feature is particularly interesting for future implementation
in an applied contexts. A first possible application would be to consider informational
issues. For instance, the PK/PD parameters’ values of patients may not be known with
certainty and have to be inferred from information arrival during treatment. As in [27],
our algorithm may easily be coupled with Bayesian learning. Another possible application
would be to consider probabilistic constraints. Such constraints may for instance reflect
the possible absence of patients on a treatment day. The protocol will then account for

these contingencies.
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