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Abstract

Background. The standard treatment for high-grade non-Hodgkin lymphoma
involves the combination of chemotherapy and immunotherapy. We characterize in-
silico the optimal combination protocol that maximizes the overall survival prob-
ability. We rely on a pharmacokinetics/pharmacodynamics (PK/PD) model that
describes the joint evolution of tumor and effector cells, as well as the effects of both
chemotherapy and immunotherapy. The toxicity is taken into account through ad-
hoc constraints. We develop an optimization algorithm that belongs to the class of
Monte-Carlo tree search algorithms. Our simulations rely on an in-silico population of
heterogeneous patients differing with respect to their PK/PD parameters. The opti-
mization objective consists in characterizing the combination protocol that maximizes
the overall survival probability of the patient population under consideration.

Results. We compare using in-silico experiments our results to standard protocols
and observe a gain in overall survival probabilities that vary from 4 to 9 percentage
points. The gains increase with the complexity of the potential protocol. Gains are
larger in presence of a higher number of injections or of an actual combination with
immunotherapy.

Conclusions. In in-silico experiments, optimal protocols achieve significant gains
over standard protocols when considering overall survival probabilities. Our opti-
mization algorithm enables us to efficiently tackle this numerical problem with a
large dimensionality. The in-vivo implications of our in-silico results remain to be
explored.
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1 Introduction

Lymphoma is a cancer affecting the lymphatic system and in particular lymphocytes
that tend to grow out of control. Since the lymphatic system involves many organs and
covers the whole body, the lymphoma can be accompanied by a number of tumors through-
out the body. There are two main types of lymphomas, Hodgkin and non-Hodgkin, where
the former is characterized by the presence of giant cells derived from B-cells, the so-called
Reed-Sternberg cells. Non-Hodgkin lymphomas are much more frequent than Hodgkin
ones. The American Cancer Society [1] reports that the incidence rate of the Hodgkin
lymphoma over the period 2010-2014 in the US is 2.7/100,000, while it reaches 19,/100,000
for the non-Hodgkin lymphoma. Non-Hodgkin lymphomas (NHL, henceforth) covers un-
der a unique denomination a wide variety of different types, that may start and affect
different organs. NHL are also characterized by heterogeneous growth rates and differ-
ent aggressiveness. On the one hand, low-grade lymphomas are said to be indolent and
correspond to a slow development. On the other hand, high-grade lymphomas are said
to be aggressive and experience a rapid development. All lymphomas are categorized in
the Revised European-American Lymphoma Classification [11| — to which corresponds the
World Health Organization classification [32].

The standard treatment for aggressive NHL relies on combination chemotherapy [9].
More precisely, the standard multi-drug combination — the so-called CHOP — involves
cyclophosphamide (750 mg/m?), doxorubicin (50 mg/m?), vincristine (2 mg/m?) on day
1, and prednisone (100 mg/m?) given on days 1 to 5. The standard cycle amounts to
21 days and is denoted CHOP-21. In the 1980s, several trials involving chemotherapy
combinations with up to 8 drugs have been conducted [6]. These different combinations
turn out to offer a very limited improvement in survival rates while being both more toxic
and more costly [13, 30]. This was confirmed in a randomized phase I1I trial, where different
combinations were tested [10]. The German High-Grade Non-Hodgkin’s Lymphoma Study
Group has analyzed several variations around the standard CHOP-21. The main variations
are: (i) the intensification of the cycle, from 21 to 14 days, (ii) the introduction of an
additional drug through the administration of etoposide, a potent cytotoxic agent, and (iii)
the intensification of drug doses in chemotherapy. Findings conclude only to partial success.
Either intensifying the cycle or introducing etoposide in a 21-day cycle (corresponding to
the so-called CHOEP-21) yields an increase in event-free survival rates [22-24]. Therefore, a
moderate intensification in cycles or in doses leads to better outcomes. However, increasing
further doses or cycles deteriorate survival rates. For instance, the cycle intensification
together with etoposide introduction — CHOEP-14 — is more toxic and leads to lower



survival rates [23]. Similarly, doubling the drug doses with etoposide and a 21-day cycle
does not provide any clinical benefit for young patients [26].

Furthermore, a paradigm shift in the treatment of NHL occurred with the combina-
tion of standard chemotherapy (CHOP and CHOEP) with immunotherapy through the
injection of rituximab, which is a monoclonal antibody [5, 25]. Rituximab contributed to
a 50% reduction in patient mortality, which makes it one of the largest success in NHL
treatment for the last years [17]. More precisely, rituximab is a type-I anti-CD20 antibody
that binds to CD20 receptors on the surface of B-cells [27]. This triggers complement-
dependent cytotoxicity, which eliminates B-cells by direct lysis [20]. This cytotoxic effect
is completed by another mechanism, the antibody dependent cellular cytotoxicity. This
mechanism makes activated B-cells visible to immunosuppression by effector cells bearing
Fc receptors [33]. Furthermore, if rituximab has only a minor direct impact on apoptosis,
it makes cancer cells more sensitive to chemotherapy |2, 4]. As for the sole chemotherapy
treatment, the question of the cycle and dose intensities has also to be investigated in case
of the combination treatment. A cycle of 14 days for the combination of rituximab with
standard CHOP (R-CHOP, henceforth) is shown to bring no improvement over a cycle
of 21 days |7]. A similar absence of effects has been shown for the intensification of the
doses in a R-CHOP21 regimen [8]. The question of designing an optimal combination
protocol remains open [18, 21]. Obviously, given the very number of possibilities to be
tested, in-silico trials and computational simulations can be helpful in providing protocol
guidelines.

In this paper, we develop an optimization heuristic algorithm to characterize the in-
silico protocol — with and without rituximab administration — that maximizes the overall
survival rates in a population of heterogeneous fictive patients, subject to toxicity con-
straints. Our optimization relies on in-silico simulations that are based on the paper by
Roesch et al. [29]. These authors provide a model of the development of high-grade NHL
that takes into account the combined cytotoxic effects of chemotherapy and immunother-
apy. We rely on population variability data from [16, 28, 29|. Our optimization objective
consists in characterizing the optimal injection schedule that maximizes in-silico the num-
ber of overall survivals in a population of heterogeneous patients, subject to some ad-hoc
toxicity constraints. The constraints we impose bear on the minimal time distance be-
tween two injections — for chemotherapy or immunotherapy —, as well as the total number
of injections. The objective of these constraints aims at proxying drug toxicity. In par-
ticular, we make no use of an explicit physiological modelling of toxicity. We distinguish
two cases, depending on whether immunotherapy is introduced or not. The patients differ

according to their immunotherapy pharmacokinetics, as well as to their pharmacodynam-



ics. We compare the outcomes of our optimal protocol to those of the standard CHOP
protocols. Our results unambiguously deliver higher survival rates for in-silico simulations.
Compared to standard protocols, the progression in survival rates of our fictive population
amounts to 5 percentage points (pp) in absence of immunotherapy and even to 9 pp when
immunotherapy is introduced. In the same fictive population, the survival rates increase
from 31.0% to 36.5% in absence of immunotherapy, and from 47.5% to 56.2% in presence
of immunotherapy. Therefore, optimizing the joint schedule of dose injections enables to
significantly improve the outcome of treatment, at least in numerical simulations. The
question of the in-vivo implications of these in-silico results remains open. It is obviously
subject to the usual limitations of a study based on a theoretical model and on prospective
data.

These results also illustrate the potential gains of introducing such an optimization
heuristic algorithm in computational oncology and in particular for characterizing in-silico
the optimal combination protocols involving both chemotherapy and immunotherapy. The
algorithm we rely on belongs to the family of Monte-Carlo Tree Search (MCTS, henceforth)
algorithms. MCTS methods are surveyed in [3|. This family of algorithms is well-known for
their application in a Go playing software. The famous AlphaGo has been very successful
in defeating several Go champions in 2016-2017. The applications of MCTS methods to
Go software can be found in [31]. We provide a detailed explanation of our algorithm in
Section 3.2. To the best of our knowledge, MCTS algorithms have not been applied to
combinations of chemotherapy and immunotherapy. However, such algorithms have already
been used successfully to characterize optimal protocols, both in chemotherapy [12] and
in immunotherapy [19] (but not with a treatment combination). One of the advantages of
MCTS algorithms is that they enable to handle a full-fledge PK/PD model, without any
need to simplify it. They take advantage of the sequential nature of treatments in oncology
and also allow for a very high degree of flexibility for real-life implementation.

2 Materials and methods

2.1 PKPD model

We present here the model which our optimization exercise relies on. This model has
been proposed by Roesch et al. [29]. It builds on a model by Kuznetsov et al. [14] for
chemotherapy and initially intended for modelling leukemia in mice. The model relies
on two main ordinary differential equations driving the evolution of the number of tumor
cells and of effector cells. The latter cells can be thought of as corresponding to CD8+

cytotoxic T-cells. In absence of chemotherapy and of effector cells, the tumor follows



an exponential uncontrolled growth. Effector cells interact with tumor cells and their
interaction is proportional to the surface of the tumor. The interaction of both cell types
leads to the killing of tumor cells. The production of effector cells is fostered by tumor cells
through immunogenicity. Effector cells die naturally and after interaction with tumor cells.
In absence of treatment, the evolution of the cancer depends on which type of cells dominate
the other. There is cure if tumor cells deplete and is overcome by effector cells. On the
opposite, there is no cure if tumor cells dominate effector cells. Chemotherapy negatively
affects the tumor growth, but also effector cells. Chemotherapy is therefore a double-edge
sword and can have the paradoxical effect to foster tumor cells by killing too many effector
cells. Finally, rituximab also has a twofold effect. First, it has a direct cytotoxic effect on
tumor cells only — not on effector cells. Second, it boosts the immunogenicity effect and
fosters the growth of effector cells.

For the calibration of the model, we rely on the parameters provided in |28, 29|, as
well as [16] for the pharmacokinetics of immunotherapy. Of note, these parameter values
include population variability. A detailed presentation of the model, with the parameter
values that we use, can be found in Appendix A.

2.2 Simulations

We simulate the model evolution for a population of 10,000 heterogeneous patients. The
model parameters of these patients are randomly drawn in the distribution of parameters
that reflects the population variability. For each patient, we simulate the evolution of the
tumor cells and effector cells until the number of tumor cells reaches a diagnosis threshold
which is itself a random variable (see Appendix A for further details). We consider this
state — when the number of tumor cells reaches the diagnosis threshold — as the initial
state. Notice that because some parameters are patient-dependent, the initial state is also
patient-dependent. We plot in Figure 1 the initial states (i.e., the numbers of tumor and
effector cells at diagnosis) in the population of patients. Note that for some parameter
values (in the dynamic system but also the diagnosis threshold itself), cancer is never
diagnosed. These individuals are discarded and therefore do not appear in Figure 1. This
explains the apparently complex distribution of initial values.

Then, the simulation is assumed to start at diagnosis date and ends 730 days — two
years — after the end of the treatment. We make this choice to avoid that the length of the
treatment influences our results. Indeed, in our simulations, increasing further the recovery
period does not change our results since the dynamic system has already converged (or
diverged).

A patient will be considered to be cured if the number of tumor cells at the final date
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Figure 1: Distribution of the number of tumor cells and of effector cells in the initial
population for patients whose cancer has been diagnosed.

is below one cell. Oppositely, a patient will be said to have a progressive disease if the
number of effector cells ends up being below one. This case also corresponds to a very
large number of tumor cells, typically above 10'3 cells. Besides these two polar cases, there
is also the possibility that the number of tumor and effector cells both remain above 1
two years after the end of the treatment. This last case corresponds to a cancer where
the cytotoxic effect of effector cells offsets the growth of the tumor for at least two years
after the end of the treatment. In our simulations, this last case is not very frequent and
typically represents less than 0.1% of patients.

To assess the efficacy of any protocol, we proceed as follows. We assume that the
protocol under consideration is administered to the whole population and we then compute
the proportion of patients, who end up with a cured cancer at the end of the simulation
horizon, after two-years. We will henceforth refer to this share as the two-year overall
survival probability. Of note, the patients with a stable cancer for two years will not be

considered as having survived. This choice is a bit conservative but has no major influence

on results since the proportion of such cancers is very low.

All our simulations are implemented in C++.



3 Results

We compute the outcomes of two families of protocols. In the first one, we consider
protocols based on a cycle. In the second family, we characterize using MCTS algorithms
the non-cyclic protocols achieving the highest two-year overall survival probability.

3.1 Cycle protocols

We focus here on the protocols based on a cycle. For the sake of simplicity, for
chemotherapy we denote zCHOPy the protocol with x the number of cycles and y the
cycle length in days. Similarly for immunotherapy, we consider protocols of the form xRy,
where = and y have the same signification as for chemotherapy (number of cycles and
cycles length). A protocol that will combine chemotherapy and immunotherapy will there-
fore combine both protocols CHOP and R. As an illustration, we report in Table 1 the
outcomes for some standard cycle protocols. For the survival probability, we report the
observed value for our in-silico population of 10,000 individuals as well as the implied 95%
confidence interval (computed as a Wilson score interval). For instance, the protocol with
12 biweekly CHOP cycles and 14 21-day long ritumixab cycles (12CHOP14-14R21) leads
to survival for 47.52% of our population patients.

Chemotherapy Immunotherapy Two-year overall survival probability (%)

6CHOP14 None 28.60
[27.72—29.49]
6CHOP14 8R21 42.53
[41.56—43.50]
6CHOP14 14R21 42.83
[41.86—43.80]
12CHOP14 None 30.96
[30.06—31.87]
12CHOP14 8R21 44.80
[43.83—45.78]
12CHOP14 14R21 47.52
[46.54—48.50]

Table 1: We consider various protocols combining chemotherapy and immunotherapy. For
the two-year overall survival probability, we report the observed value and below, between
square brackets, the implied 95% confidence interval.

One of the main lessons of Table 1 is that including immunotherapy in a standard
chemotherapy protocol drastically improves treatment outcomes. This is particularly strik-
ing when comparing the rows in absence of immunotherapy (rows 1 or 4) to their respec-
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tive counterparts in presence of immunotherapy (rows 2 and 3 or 5 and 6, respectively).
The in-silico model reflects the significant benefits from combining immunotherapy with
chemotherapy observed in clinical trials [17].

We focus here on protocols with chemotherapy only. We compute for any cycle length
the interval between injections that leads to the highest survival probability. More formally,
for any = € [1,12], we determine y* € [7,35], such that xtCHOPy* yields a higher survival
probability than any other protocol zCHOPy (y € [7,35]).! We plot in Figure 2 the
survival probabilities associated to these optimal protocols with cycles. Exact values (as
well as the cycle length maximizing efficacy) can be found in Appendix B.1. Two lessons
can be drawn from Figure 2. First, a moderate increase in the number of cycles significantly
improves the protocol outcome. Increasing the number of cycles from 1 to 8 increases the
survival probability from 4.4% to 32.5%. Second, increasing the number of cycles further
does not yield any further outcome improvement. We can even observe a slight degradation
of survival probabilities. For instance, moving from 8 to 12 cycles slightly diminishes the
two-year overall survival probability from 32.5% to 31.3%. These in-silico findings are
consistent with clinical trials, showing that if cycle intensification has positive effects for
moderate total cycle numbers, the intensification turns out to generate negative effects for
large cycle cycle numbers [23].

Given the very high number of possible combinations, it is not possible to replicate the
graph in Figure 2 for the combination of immunotherapy and chemotherapy. Yet, we will

be able to use these results as a benchmark for comparison with non-cyclic protocols.

3.2 Unconstrained optimization

We now focus on unconstrained protocols. Using a MCTS algorithm, we determine the
non-cyclic protocols that maximize the two-year overall survival probability for a popula-
tion with the same parameters distributions as ours. Then, the population on which we test
our optimized protocol has the exact same characteristics as the one in Sections 2.2 and 3.1.
These optimal protocols are parametrized by the number of chemotherapy injections and
the number of immunotherapy injections. We formally denote such an optimal protocol
0C; , where OC stands for optimal combination,  the number of chemotherapy injections
and y the number of immunotherapy injections. We furthermore impose two constraints in
our optimization. First, the time interval between two chemotherapy injections should not
be smaller than 7 days. Second, we impose the same time constraint for immunotherapy
injections. This limit of 7 days stems from the fact that it corresponds to the minimal

cycle length in [29]. The objective of these constraints is to mimic toxicity constraints.

!The set [n, m] gathers all integers from n to m > n.
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Figure 2: For each number of CHOP cycles (without immunotherapy), we determine the
cycle length that leads to the highest survival probability. The point corresponds to the
average and the two bars delimit the 95% confidence interval.

Indeed, in absence of physiological model of toxicity, we need to rely on proxies. This is
a limitation of our exercise and should be kept in mind when interpreting the results and
thinking about their in-vivo implications.

We report some results in Table 2 that mirror those of Table 1. Compared to Table 1
, it is straightforward to observe that optimal protocols lead to higher survival probabili-
ties than standard combination protocols. Gains in two-year overall survival probabilities
vary from 5 to 9 percentage points. Unsurprisingly, the gain of optimization is rising with
possible complexity of the protocol. This complexity can be generated either by the combi-
nation of immunotherapy with chemotherapy or by the higher number of injections. Note
that we discuss below the dosage of the different optimal protocols.

It is noteworthy that the dimensionality of the optimization exercise is very high. In
particular, relying on a standard optimization technique such as dynamic programming is
not an option here. Our algorithm enables to overcome this difficulty and to tackle the
dimensionality issue. How does it work exactly? A detailed account of our algorithm in a
simpler set-up featuring chemotherapy only (but no immunotherapy) is provided in [12].
We can sum up the functioning of our algorithm in the current set-up as follows. We start
with a heterogeneous in-silico patient population, as described in Section 2.2. We consider



Optimal protocol Two-year overall survival probability (%)

OCs 32.71
[31.80—33.64]

OCs3 48.13
’ [47.15—49.11]

OCs 14 49.69
[48.71—50.67]

0012’0 3646
[35.52—37.41]

OCia58 54.06
’ [53.08—55.04]

0Ci2.14 56.20
[55.23—57.17]

Table 2: For some optimal protocols, we report for the two-year overall survival probability
the observed value in the patient population and below, between square brackets, the
implied 95% confidence interval. The latter is again computed as a Wilson score interval.

also as given a set of schedule constraints (mimicking toxicity constraints: no less than 7
days between two consecutive administrations of either chemotherapy or immunotherapy),
as well as constraints on the number of maximal administrations (for OCj g, no more than
6 chemotherapy and 8 immunotherapy administrations). The initial date is normalized at
date 0.

At day 0, and as at any day, a treatment is possible and the algorithm must then
decide upon the treatment on that day. In this PK/PD model, doses are fixed, so the
algorithm needs to decide between two alternatives: injection or no injection for chemo- and
immunotherapy, which adds up to 4 different possible combinations. Some combinations
can be ruled out because of schedule constraints or because of the maximal bound on the
number of administrations. Here obviously, at day 0, since no administration has taken
place yet, none of these constraints is likely to be binding. The algorithm then computes
the best combination among the four. To do so, each of the four combination is associated
to a fictive population, which is an exact copy of the current population for which a
decision needs to be made. The algorithm then simulates the evolution of the the number
of effector and tumor cells for the four fictive populations, assuming that each population is
administered a default continuation treatment policy (see below for further details about
this default policy). The recommended combination is then the one corresponding to
the population with the best outcome after simulation. The best outcome is assumed to
be the one with the smallest number of tumor cells. The actual patient population is
then administered the recommended combination. We then compute the evolution of the
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number of tumor and effector cells in the population using the PK/PD model until the next
day, which is day 1. The same procedure as in day 0 then applies. The algorithm checks
the validity of schedule constraints and selects the best treatment combination. This is
repeated every day until the last treatment day (day 180) and evolution of the population
is then simulated — with no treatment administration — until day 730. The last simulation
window guarantees that the dynamic system has converged.

The tricky part of the algorithm is the choice of default continuation treatment policy
when simulating the four fictive patient populations. In this case, we choose the default
policy associated to the optimal algorithm under consideration. For instance, for the
computation of OCjg, the default policy will be the cycle protocol 6CHOP14-8R21.

Contrary to our previous studies [12, 19], our current exercise involves a two-dimensional
choice (chemotherapy and immunotherapy), which corresponds to treatment combination.
Furthermore, the dynamic system of the current PK/PD model is highly non-linear, as can
be seen from Figure 4 below. This paper therefore shows that our optimization method
can therefore handle a complex problem, with potential real-life applications.

4 Discussion

We now compare further into detail two protocols, 6CHOP14-8R21 and OCgg, with
6 injections of chemotherapy and 8 injections of immunotherapy each. In Table 3, we
show the share of individuals in our in-silico population that are cured for each protocol,
6CHOP14-8R21 and OCgg.2 As we have already shown, the optimization increases the
two-year overall survival probability by almost 6 percentage points, since it moves from
42.53% to 48.13%. This net gain does not hide a large share of patients that suffer from
the optimization. Only 0.67% of patients that were cured with the standard protocol are
not cured with the optimized one. So, the net gain is almost equal to the share of patients
cured by the optimized protocol that are not cured with the standard one. This last
share amounts to 6.27%. In our in-silico simulations, the optimization therefore benefits
to almost every patient.

We now turn to the dynamic results. In Figure 3, we plot the evolution of the overall
survival probability from the date of diagnosis (and hence treatment) until 2 years after the
last injection shot — that is attached to OCsg. The black line corresponds to 6CHOP14-
8R21 and the grey line to OCgss. The graph makes it clear that the overall survival
probability for both protocols has converged and that the last date value we consider does

not influence results. We first observe that the two-year overall survival probability is

2Notice that both treatments are implemented for exactly the same in-silico populations.
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Cured Not cured Total

6CHOP14-8R21 6CHOP14-8R21
Cured OCg g 41.86% 6.27% 48.13%
Not cured OCy g 0.67% 51.20% 43.87%
Total 42.53% 57.47% 100%

Table 3: Proportions of patients that are cured and not cured with 6CHOP14-8R21 and
OCs g protocols.

higher for OCss than for 6CHOP14-8R21, which confirms the results of Table 3. The
comparison between the two curves can be split in three parts. First, we observe that
during the first 4 months of the treatment, the standard and optimized protocols perform
very similarly. Second, between day 120 and day 500, the gap between the outcomes of both
protocols progressively widen. The over-performance of optimized over standard protocol
progressively reveals during that period. Third, after day 500, there is no further change
in overall survival probabilities and the gap between both protocols remains unchanged to
its value of 6 points approximately. Consequently, the gains of optimization in in-silico
simulations only progressively appear and do so quite late in the treatment. Of note,
Figure 3 shows that the model does not feature any late relapse, while they have been
documented in the literature [10, 15].

We also report administration schedules in Table 4. Regarding chemotherapy, the treat-
ment is very dense for the first three injections of OCj g, while the last three injections occur
with a greater time interval than with 6CHOP14-8R21. The chemotherapy treatments of
both protocols end up at close dates. We observe a similar pattern for immunotherapy
administration. The first four injections occur on an intense schedule (within 22 days),
while the four last ones are realized with much larger intervals. The last immunotherapy
administrations for both the standard and optimal protocols are very close in time. We
report in Section B.2 of the Appendix the administration schedules and the evolution of
overall survival probabilities for other optimal protocols (OCso, OCg 14, OC120, OCiag,
and OC1a14).

We now study the evolution of the cancer through the number of tumor and effector
cells. We represent such an evolution for two specific patients in Figure 4. Panel 4a
corresponds to a patient who is cured with OCp g but not with 6CHOP14-8R21, and vice-
versa for the patient of Panel 4b. These graphs show the highly non-linear dynamics of the
cancer evolution. To better understand why, note that the trajectory for each protocol is

12
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Figure 3: The two curves represent the evolution of the overall survival probabilities. The
dark line corresponds to 6CHOP14-8R21 and the light color to OCj s.

made of two parts. The first part, which is a broken line, consists of the treatment itself,
where each kink corresponds to an injection. The second part, which is a smooth line,
corresponds to the evolution of the system after the treatment. On Panel 4a, the patient
receiving OCg s ends up with a smaller number of tumor cells, and a larger number of
effector cells than the standard treatment. Overall, the optimized protocol yields tumor
elimination, while the standard protocol does not. On Panel 4b, the situation is partly
reversed: the optimized treatment ends up with slightly more effector cells, but less tumor
cells. This time, only the standard protocol eliminates the tumor. So, given the highly
non-linear dynamics of the cancer tumor, focusing only at one indicator at the end of the
treatment can be misleading. A ‘low’ number of tumor cells does not necessarily imply
tumor elimination eventually. The strength of our optimization algorithm is to be able to
overcome these difficulties and to deliver an efficient protocol.

The variations are computed as follows. At each date of administration of chemo (resp.
immuno), with a given shifting probability, we add a 1-day or 3-day shift for the current
administration and the remaining of the chimo (resp. immuno) schedule. Shifting all
subsequent administration dates enables to preserve the schedule constraints. Our results

for the two-year overall survival probability are gathered in Table 5.
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Day 6CHOP14-8R21 OCs s

1 chemo 4+ immuno chemo + immuno
8 chemo + immuno
15 chemo chemo + immuno
22 immuno immuno

26 chemo

29 chemo

38 immuno

43 immuno-+chemo

44 chemo

57 chemo

58 immuno

64 immuno

65 chemo

71 chemo

85 immuno

106 immuno

127 immuno

123 immuno

148 immuno

158 immuno

Table 4: Administration schedules of the protocols 6CHOP14-8R21 and OCjs.

Finally, as a robustness check, we study to which extent our results are sensitive to the
exact timing of administration. Such a robustness check enables us to measure how real-
life contingencies (missed administration because of a patient absence for instance) could
affect protocol outcomes. We consider the optimal protocol OCgsg as our benchmark. We
then perform a stochastic sensitivity analysis, in which we implement a random variation
of OCg for each of the 10,000 patients of our in-silico population. A random variation
of OCqg is computed as follows. At each date of a chemotherapy (resp. immunotherapy)
administration, we shift by 1 day or 3 days, with a given probability, the current ad-
ministration date and all remaining chemotherapy (resp. immunotherapy) administration
dates. Shifting all subsequent administration dates enables us to preserve the schedule
constraints. Note that we exclude any variation that is identical to OCpsg. Our results for
the two-year overall survival probability are gathered in Table 5.

For sake of simplicity, the first row of Table 5 corresponds to a zero shift probability
and therefore to OCsg. As can be observed, shifting administration days deteriorates

14
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Figure 4: Dynamic evolution in the space of number of tumor and effector cells for two
different patients. For both graphs, the dark line corresponds to the evolution before the
diagnosis (with 10? tumor cells at initial time), the light line to the evolution for the
6CHOP14-8R21 protocol and the lightest line to the evolution for the OCg g protocol.

the protocol outcome and the effect is larger when the probability is high and the time
shift long. This conclusion is rather intuitive and consistent with the idea that OCg is
optimal. However, the impact is relatively modest, at least for the 1-day time shift. For
the three probabilities, the decrease in two-year overall survival probability is smaller than
1 point and is not significant. For the 3-day time shift, the impact remains small and non
significant for a shifting probability of 10%. However, for the probabilities of 20% and 50%,
this does not hold any more. In particular, for the 50% probability, the impact amounts
to 3 points approximately, and is significant.

In in-silico trials, MCTS algorithms have proved to be helpful in characterizing efficient
protocols for a treatment combination of chemotherapy and immunotherapy. The gain is
sizable and amounts to almost 6 percentage points in two-year overall survival probabilities
for a combinations with 6 chemotherapy injections and 8 immunotherapy ones — as in the
non-optimized standard 6CHOP14-8R21. Gains can be larger for more complex combina-
tions of chemo- and immunotherapy. However, when interpreting our results, two caveats
should be kept in mind. First, in our in-silico optimization, toxicity is limited by ad-hoc
constraints on time intervals between injections and not by an actual physiological toxicity
model. Second, our results have been validated in-silico trials only. The underlying model
is indeed likely to feature a number of simplifications that could affect outcomes (such as

the absence of late relapses in the model, as discussed for Figure 3). As for any numerical
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Shifting Two-year overall survival probabilities
probability 1-day shift | 3-day shift
0 48.13 (= 0Csgs)
[47.15—49.11]
47. 47.42
10% [46‘8’5?—%?84] [46.4’31748.4]
47. 46.
20% [46,85?—%?.81] [45.9?377.95]
47.35 45.23
50% [46.37—48.33] [44.24-46.21]

Table 5: Robustness analysis of our results. Two-year overall survival probabilities (with
90% confidence intervals between brackets) when administration dates of OCp g have been

shifted by 1 or 3 days with a probability of 10%, 20% or 50%.

analysis, further work is needed to understand to which extent our conclusions would hold
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Appendix

A Description of the model

We report below the ODE of the model we use as well as its calibration. We recall
that the model borrows from [29] and the calibration from [16, 28, 29]. 7" is the number of

tumor cells and F a surrogate number of immune effector cells.

dT

il ol —vET® — krTlor — kriCriT

dE ET* 7
v _ 1+ fral g _§E — uET* — kiEl

= o+ p( +thRt)77+TC e svlcr

with

e lor equals to 1 if the last chemotherapy application occured less than 1 day before

the current date (0 otherwise),

e 1g;; equals to 1 if the last Rituximab application occured less than 100 days before

the current date (0 otherwise),

e (i is the Rituximab plasmatic concentration. It is the sum, for all administra-
tions, of the output of an open 2-compartment model as given in [16] with @ the
intercompartmental clearance, V' the central volume, ¢;/5, and t; /5 g the elimination
half-lives.

Parameters’ values are given in Table 6.
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Parameter Value Dimension  Source Description

o 1400 cells.day!  [29] Tumor-independent  production
rate of effector cells

n 2.019e5 cells [29] number of tumor cells where ef-
fector cell stimulation rate is half-
maximal

1 3.422e-10 cell''dayt  [29] Tumor-induced inactivation rate
of effector cells

J 0.007 day™! [29] inactivation rate of Effector cells

v 1.101e-7 cell''day |29 Effector-induced elimination rate
of tumor cells

c 0.75 [29] Exponent in interaction terms of
effector and tumor cells corre-
sponding to dimensionality of tu-
mor surface

kri: 0.6e-4 daymltug  [29] Factor of tumor cell kill due to rit-
uximab therapy

frit 0.3 [29] Immune stimulation factor of rit-
uximab

kg 0.476 day! [29] Effector log cell kill due to
chemotherapy

o LN(0.118,0.054) day™ [29] Tumor growth rate

LN(0.078,0.038) day™ [29] Tumor-induced stimulation rate of

effector cells

log0(Tuiag) N(11.315,0.473)  cells [29] log10 tumor volume at diagnostic

kr N(2.363,0.307)  day! [29] Tumor log cell kill due to
chemotherapy

Q N(0.408,0.072)  L/day [16] Intercompartmental clearance

1% N(3.88,0.2) L [16] Central volume

t1/2,a 0.3529 day [16] Elimination half-life

ti2, 37.333 day [16] Elimination half-life

BSA N (1.8,0.15) m? [16] Body Surface Area

Table 6: Parameters’ values.
LN and N correspond to a log-normal and a normal distribution, respectively.
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B Additional results

B.1 Values of Figure 2

We report in Table 7 the values underlying Figure 2. In particular, we report the period
between injections that corresponds to the highest two-year overall survival probability.
Note that this period is not defined when there is no or only one injection. We also report
the exact values for the corresponding median overall survival probability, as well as the

associated confidence interval.

r y* OSP (observed) OSP (95% CI)
0 0.41 [0.30 - 0.56]

| 4.42 [4.03 - 4.84]

2 7 10.90 [10.30 - 11.53|
3 7 17.61 [16.88 - 18.37]
4 7 23.72 [22.90 - 24.56|
508 27.91 [27.04 - 28.80]
6 10 30.75 [29.85 - 31.66]
711 32.09 [31.18 - 33.01]
8 12 32.51 [31.60 - 33.43]
9 13 32.44 [31.53 - 33.36]
10 14 32.04 [31.13 - 32.96]
11 15 31.57 [30.67 - 32.49]
12 15 31.33 [30.43 - 32.25]

Table 7: CHOP cycles :tCHOPy*, where for each number of cycles z, the cycle length y*
maximizes the two-year overall survival probability (OSP).

B.2 Injection timing of optimal protocols

In Figure 5, we plot the evolution of overall survival probabilities and the timing of
injections for the optimal protocols OCs, OCg 14, OCi29, OClas, and OCi214 that are
presented in Table 2. They confirm the findings of Figure 3 presented in Section 4.
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Figure 5: The black curve represents the evolution of the overall survival probabilities.
Arrows correspond to injections: plain ones for chemotherapy and dashed ones for im-

munotherapy.
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