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1 Introduction

Infinite-horizon incomplete insurance-market models with credit constraints are known to

be difficult to solve in the presence of aggregate shocks. These models generate a large

amount of heterogeneity, reflected by the time-varying distribution of agents’ wealth with

large support, meaning that numerical methods are required to approximate the equi-

librium (Krusell and Smith 1998). In this paper, we use a class of incomplete-market

models to conduct theoretical investigations of equilibrium allocations and asset prices.

We prove the existence of an equilibrium in the presence of aggregate shocks, heteroge-

neous levels of idiosyncratic risk, and stock-market participation costs, for which we can

analytically examine the main determinants of risk allocation and of asset prices.1 Our

modeling strategy is based on two assumptions. First, we assume that the period utility

function is linear above a certain threshold, strictly concave below the threshold, but glob-

ally smooth and concave. This utility function was first introduced in decision theory by

Fishburn (1977) to analyze risk for “below-target returns”.2 The way the utility function

provides tractability in incomplete-market models is interesting compared to alternative

approaches. In particular, incomplete-market models have often relied on quasi-linearity

in the labor supply to reduce the state space dimension (Scheinkman and Weiss 1986;

Lagos and Wright 2005; Challe, LeGrand, and Ragot 2013; Le Grand and Ragot 2016;

Wen 2015, among others). Assuming linearity in the labor supply has the drawback that

the consumption of agents with infinite labor elasticity is constant and independent of

wealth and income. This infinite elasticity is also far too high at the household level

(see Hall 2010 for a recent survey). The Fishburn utility function, linear beyond a given

threshold, may thus be an attractive alternative for studying consumption dynamics and

realistic labor income processes, as we do in this paper. Our second assumption is that

the supply of securities is not too large. This implies that credit constraints are binding

for agents who have experienced only a small number of consecutive bad idiosyncratic
1Note that the existence of simple recursive equilibria in such environments is still an open question

(Miao, 2006).
2This captures the idea that investors are averse to risk for low returns (below a given target), but

much less concerned about risk for high returns.
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shocks, which generates an equilibrium with a small number of heterogeneous agents.

Our economy therefore features a small-trade equilibrium, where prices can be analyti-

cally studied, as in no-trade equilibria (see below for references), but where we can also

investigate consumption allocations and the role of security volumes.

The goal of the paper is to show the usefulness of this setup by theoretically investigat-

ing the properties of an environment where two groups of agents face two different labor

income processes together with limited participation in financial markets. The motivation

for such an environment is based on previous results in the literature. First, it is known

that incomplete insurance-markets models can help to solve some asset pricing puzzles

but that they are generally unable to reproduce a high equity premium for a realistic

calibration (Krusell and Smith 1998; Krusell, Mukoyama, and Smith 2011, among many

others). Second, adding limited participation in financial markets can help to reproduce

relevant aspects of asset prices (Allen and Gale 1994; Guvenen 2009) and is consistent with

empirical evidence (Bricker et al. 2014). Third, empirical investigations of income risks

in the US show that high-income households face lower risk than low-income households,

who generally do not participate in financial markets.3

We derive two main sets of results. First, we prove the existence of an equilibrium and

exhibit the structure of this limited-heterogeneity equilibrium. We then theoretically show

how the model can generate a low return for the safe asset and a high equity premium.

We also characterize the effects of risks and volumes on asset prices, deriving explicit

formula to identify all effects at stake. In particular, a higher volume of securities reduces

asset prices and improves consumption smoothing, whereas a higher level of idiosyncratic

risk generates both a decrease in the bond interest rate and an increase in stock prices.

Second, the calibrated model satisfactorily reproduces household risk exposures and

asset price properties. The model generates a more volatile consumption growth rate for

low-income households than for high-income households, as in the data. High-income

households are also found to bear a larger fraction of the aggregate risk than low income
3See De Giorgi and Gambetti (2017), Gârleanu, Kogan, and Panageas (2012), Meyer and Sullivan

(2013), and Bricker et al. (2014), among others, for empirical evidence.
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households (Parker and Vissing-Jorgensen 2009), while the latter face a larger total risk.

The paper contributes to the theoretical literature on incomplete-market models. In

this literature, analytical tractability can be obtained in a no-trade equilibrium, as in

Constantinides and Duffie (1996) or Krusell, Mukoyama, and Smith (2011). In these

economies, assets can be priced, even in absence of trade. In our model, trades do actually

occur at the equilibrium. We show that limited asset market participation is sufficient

to explain both a high equity premium and the volatility of consumption, with a risk

aversion as low as 1 in the concave part of our benchmark calibration. Our assumption

of a concave-linear utility function is similar to several papers that consider linearity in

consumption utility, in leisure utility, or in the production function in order to reduce

ex-post heterogeneity, such as Scheinkman and Weiss (1986), Lagos and Wright (2005),

Kiyotaki and Moore (2005, 2008), Dang, Holmstrom, Gorton, and Ordoñez (2017), Wen

(2015), or Miao and Wang (2017), among others. Finally, this paper generalizes previous

work on small-trade models (Challe, LeGrand, and Ragot 2013, Challe and Ragot 2014, or

LeGrand and Ragot 2016). The paper is also related to the vast literature on asset prices

with heterogeneous agents. Our contribution to this literature is to analyze the interaction

of two frictions in a tractable framework: limited participation and incomplete insurance

markets with heterogeneous income-risk exposure.4

The remainder of the paper is organized as follows. In Section 2, we present the

model and derive our equilibrium existence result. In Section 3, we present the intuition

underlying our model in simplified versions of our framework. In Section 4, we perform a

quantitative exercise to show that the model can reproduce household risk exposures and

asset returns. Section 5 discusses the key assumptions of the model. Section 6 concludes.
4Among the recent quantitative papers, Guvenen (2009) studies a model with limited participation

and household heterogeneity in intertemporal elasticities of substitution. Constantinides and Ghosh
(2017) build on Constantinides and Duffie (1996) to construct a no-trade equilibrium with Epstein-Zin
preferences. Chien, Cole, and Lustig (2011, 2012) consider an incomplete-market model featuring exoge-
nous trading restrictions, which can easily be simulated. Gomes and Michaelides (2008) and Favilukis
(2013) consider models with preference heterogeneity (in terms of intertemporal elasticity of substitution
or bequest motive) together with incomplete markets or limited participation.
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2 The model

The model relies on three assumptions: (i) incomplete insurance markets, (ii) limited

stock market participation, and (iii) a concave-linear utility function.

2.1 Risks and securities

Time is discrete and indexed by t = 0, 1, . . . The economy is populated by two types

of infinitely-lived and ex-ante different agents. Each population of type i = 1, 2 is of

size 1 and is distributed on a segment Ji according to a measure `i.5 We call these two

populations “type-1” and “type-2” agents, respectively, and the letter i will consistently

refer to the agent’s type (1 or 2). The two populations differ only with respect to the

severity of their idiosyncratic risk.6

2.1.1 Aggregate risk

There is a single aggregate shock (zt)t≥0, which can take n different values in the set

Z = {z1, . . . , zn}. The aggregate risk process (zt)t≥0 is a time-homogeneous first-order

Markov chain with transition matrix Π = (πkj)k,j=1,...,n. The probability πkj of moving

from state k to state j is thus constant. For every date t ≥ 0, zt ∈ Zt+1 denotes a possible

history of aggregate shocks up to date t.

2.1.2 Idiosyncratic risk

Agents face an idiosyncratic risk in addition to the aforementioned aggregate risk. This

individual risk can be neither avoided nor insured. We call this a productivity risk,

although it may cover many other individual risks (such as the risks of unemployment,

income, health, etc.) that are likely to affect the agent’s productivity (see Chatterjee,
5Among others, Feldman and Gilles (1985) have identified issues when applying the law of large

numbers to a continuum of random variables. Green (1994) describes a construction of the sets Ji and of
the non-atomic measures `i to ensure that our statements hold. Feldman and Gilles (1985), Judd (1985),
and Uhlig (1996) propose other solutions. From now on, we assume that the law of large numbers applies.

6Our results could easily be generalized to the case where we assume different masses for both types
of agents.
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Corbae, Nakajima, and Rios-Rull 2007 for a quantitative discussion). At any point in

time, type-i agents can either be productive (denoted herein by p), earning income ωi(zt),

or unproductive (denoted by u), earning income δi.7 Both incomes may depend on the

agent’s type i. To simplify the exposition, we assume that δi does not depend on the

aggregate risk zt, however all of our results can easily be extended to stochastic incomes

δi. We assume that, regardless of the aggregate state, ωi(zt) is greater than δi for both

agent types. Moreover, when productive, type-1 agents have a higher income than type-2

agents. These assumptions are summarized in Assumption C below.

For each type-i agent at any date t, the function ξit(zt) characterizes the current status

of the agent’s productivity, taking the value 1 when the agent is productive and 0 when

unproductive. For both agents, the productivity risk process (ξit(zt))t≥0 is a two-state

process with transition matrix T it =

 αit(zt) 1− αit(zt)

1− ρit(zt) ρit(zt)

.
We call ηit ∈ (0, 1) the share of productive agents in a type-i population. Initial values

η1
0 and η2

0 being given, the laws of motion of productive shares are:

ηit(zt) = αit(zt)ηit−1(zt−1) + (1− ρit(zt))(1− ηit−1(zt−1)), for i = 1, 2 and t ≥ 1. (1)

To obtain a tractable framework, we impose the following constraint:

Assumption A (Population shares) The probabilities αit and the shares ηit depend

solely on the current aggregate state and not on the whole history. Formally, we have:

αit(zt) = αi(zt−1) and ηit(zt) = ηi(zt) for t ≥ 0 and i = 1, 2.

This assumption simplifies the dynamics of the population structure, but does not

guarantee analytical tractability, since in general, it does not prevent the wealth distri-

bution from having an infinite support. Assumption A includes the standard case where

αit and ηit (i = 1, 2) are constant. Furthermore, Assumption A implies that the primitives

of our model are αit and ηit, while transition rates (ρit)t≥0 adjust for equation (1) to hold.8

7Our idiosyncratic productivity risk is similar to Kiyotaki and Moore (2005, 2008), Kocherlakota
(2009), and Miao and Wang (2017), although our model and the scope of our paper are very different.

8Note that in that case, ρi
t will depend on two consecutive states and (ξi

t(zt))t≥0 is a second-order
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2.1.3 Asset markets

There are two types of assets in the economy – a risky stock and a riskless bond, issued

by the government. This is the simplest environment in which to study the price of the

safe asset and the market price of risk.

The risky asset. There is a constant mass VX of a Lucas tree. The tree dividend is

stochastic and the payoff in state k is yk (k = 1, . . . , n). At any date t, we denote by Pt
the (endogenous) price of one “stock” or “risky asset” (i.e., a share of the tree).

The bond. There is also a riskless bond of maturity one. Purchased at date t at price

Qt, these bonds pay off one unit of the consumption good at the next date in all states

of the world. The total supply of bonds is constant and equal to VB. These bonds – or

safe assets – are issued by the government and funded by taxes on productive agents.

Participation structure. We assume that trading stocks requires type-i agents to pay a

per period lump-sum participation cost χi, while bond trading is free. This cost is consis-

tent with many empirical studies, such as Mankiw and Zeldes (1991) or Vissing-Jorgensen

(2002), and is frequently used to generate limited participation.9 The participation cost

is a shortcut for both monetary and non-monetary hurdles to stock market participation.

In particular, non-monetary costs may cover informational aspects, such as acquiring and

maintaining financial literacy and maintaining an up-to-date knowledge of stock markets.

There is strong evidence that the population is heterogeneous in terms of its financial lit-

eracy and that people with low financial literacy participate less in stock markets (see van

Rooij, Lusardi, and Alessie 2011 among others). The goal of this participation cost is not

to provide a fully fledged theory of limited participation, but to quantify the opportunity

cost of not participating in financial markets. We make the following assumption in order

to define asset market structure.

Assumption B (Participation costs) We assume that χ2 is large enough for type-2

agents not to trade stocks, while type-1 agents do not pay participation costs: χ1 = 0.
Markov chain.

9The impact of participation costs on asset prices has, for instance, been studied in Basak and Cuoco
(1998), Heaton and Lucas (1999), Polkovnichenko (2004), Gomes and Michaelides (2008), Guvenen (2009),
Walentin (2010), and Favilukis (2013).
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This assumption implies that, consistent with the empirical facts presented in Section

4 below, type-1 agents will trade stocks, while type-2 agents will not. Equation (29) in

Appendix A provides an explicit formula for an upper bound on χ2.

The State budget. Bond issuances are financed by income taxes. We assume that

there is no government consumption, such that taxes and new bond issuances exactly

cover maturing bond payoffs. Moreover, the tax on both types of productive agents is

assumed to be proportional to their income. We denote by τt the income tax rate, which

is independent of the agent’s type. A balanced government budget constraint at any date

t therefore implies that the tax rate is:

τt = (1−Qt)VB
ω1
t η

1
t + ω2

t η
2
t

. (2)

2.2 Agents’ preferences

Agents’ preferences are a crucial feature of the model’s tractability, enabling us to derive

our small-trade equilibrium with a finite number of states.

Description of preferences. The period utility function ũ is smooth, continuous, strictly

increasing, and globally concave. It is strictly concave for low values of consumption and

may have two linear parts. This assumption can be formally written in terms of the

conditions imposed on marginal utility ũ′:

ũ′(c) =



u′(c) if c ≤ c∗1,

λ2 if c∗2 ≤ c ≤ c∗3,

λ1 ≤ λ2 if c∗4 ≤ c ≤ c∗5,

(3)

where 0 < c∗1 < c∗2 < c∗3 < c∗4 < c∗5 . When agents consume a low amount, they value

their consumption with the marginal utility u′(·), which is the derivative of a function

u : R+ → R assumed to be twice derivable, strictly increasing, and strictly concave. When

agents consume a higher amount, their marginal utility is constant for two consumption

intervals, where it is equal to λ1 or λ2. The derivative of ũ is not further specified. As
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the intervals specified above are disconnected, one can easily construct a function ũ that

is smooth, continuous, strictly increasing, and globally concave. Figure 1 plots the shape

of this period utility function.

utility

consumption
c∗1 c∗2 c∗3 c∗4 c∗5

cst. slope λ2 cst. slope λ1

Figure 1: Shape of the period utility function

We now formulate our next assumption.

Assumption C (Income processes) We assume that in any state k = 1, . . . , n, we

have c∗2 < ω2(zk) < c∗3, c∗4 < ω1(zk) < c∗5 and δi < c∗1 for i = 1, 2. This implies that

δi < ωi(zk) for both types i = 1, 2 and ω1(zk) > ω2(zk) (∀k = 1, . . . , n).

Assumption C states that the income of type 1 and 2 productive agents lies in the set

where the utility function is linear, and that the income of type 1 and 2 unproductive

agents lies in the set where the utility function is strictly concave. A straightforward

corollary is that, in the absence of trade, unproductive type-i agents are endowed with

marginal utility u′(δi), while productive type-i agents have marginal utility λi < u′(δi),

where this last inequality illustrates that for any type i, you will be better off if you are

productive than if you are unproductive.

Effect on the equilibrium. The assumption of constant marginal utility for productive

agents helps generate a limited heterogeneity equilibrium. The individual histories of
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productive agents are not relevant for the pricing of securities since their marginal utility

depends only on their type and not on their past saving choices.

Interpretation. The utility function in equation (3) generalizes the utility function of

Fishburn (1977), which is linear above a given threshold and strictly concave below it.

In a portfolio choice problem, the agent endowed with such a utility is risk-neutral for

large payoffs and risk-averse for low ones. Loosely speaking, this functional form reflects

the asymmetry in risk perception. Payoff realizations that are lower than a given thresh-

old are perceived as actual risks, while payoffs greater than the threshold are perceived

as being “nice surprises”. As explained by Fishburn (1977, p. 123), this concave-linear

functional form is “motivated by the observation that decision makers in investment con-

texts frequently associate risk with failure to attain a target return”. In our paper, the

concave-linear utility function can be understood as an approximation, according to which

the present wealth of productive agents is scarcely affected by saving choices, implying a

constant marginal utility. Conversely, unproductive agents use a strictly concave function

to value their (lower) consumption. Importantly, this assumption does not imply that

productive agents are risk-neutral: the concave part of the function directly affects asset

pricing and the agents’ behavior (see Section 3.2). We discuss the concave-linear utility

further in Section 3.3.

2.3 The agent’s program

Timing. At the beginning of every period, the agent observes her current productivity

status and dividend payoff.

Allocations. Due to the timing of the agent’s program, the agent’s choices – consumption

levels (cit)t≥0 and demands for stocks and bonds, respectively denoted by (xit)t≥0 and

(bit)t≥0 – at date t are mappings defined over the state space of possible shock histories

Zt × Et.10 The consumption of any type-i agent is assumed to be positive:

∀t ≥ 0, cit ≥ 0. (4)
10For the sake of clarity, we drop dependence in the shock histories.
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Budget and borrowing constraints. The choices of a type-i agent are limited by a budget

constraint in which total resources, made up of income, stock dividends, and security-sale

values, are used to consume, pay taxes, and purchase securities. Formally, for all t ≥ 0:

cit + Pt x
i
t +Qtb

i
t + χi1xit>0 = (1− ξit)δi + ξitω

i
t(1− τ it ) + (Pt + yt)xit−1 + bit−1, (5)

where 1xit>0 is the indicator function equal to 1 if the agent purchases stocks (i.e., if

xit > 0), and equal to 0 otherwise.

In addition, agents face borrowing constraints. They can neither hold a negative share

of stocks nor short-sell the bond. This implies that:11

∀t ≥ 0, xit, bit ≥ 0. (6)

A feasible allocation for a type-i agent is a collection of plans (cit, xit, bit)t≥0 such that

equations (5) and (6) hold at any date t. The set of feasible allocations Ai is

Ai =
{

(cit, xit, bit)t≥0 : equations (4), (5), and (6) hold
}
. (7)

Agent’s program. The agent’s program consists in finding a feasible allocation in the set

Ai that maximizes her intertemporal utility subject to a transversality condition. Instan-

taneous utilities are discounted by a time preference parameter β ∈ (0, 1). The operator

E0[·] is the unconditional expectation regarding aggregate and idiosyncratic shocks. The
11It would be possible to have strictly negative (but not too loose) borrowing constraints on bonds

and stocks, while preserving the existence of an equilibrium. However, the set V of admissible security
volumes compatible with the existence of an equilibrium and defined below in Proposition 1 would be
different.
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initial financial asset endowments are denoted by xi−1 and bi−1. Formally:

max
(cit,xit,bit)t≥0∈Ai

E0

[ ∞∑
t=0

βtũ(cit)
]

(8)

s.t. lim
t→∞

βtE0
[
ũ′(cit)xit

]
= lim

t→∞
βtE0

[
ũ′(cit)bit

]
= 0,

{xi−1, b
i
−1, ξ

i
0, z0} are given.

Agents’ risk-sharing is limited in three respects. First, as in the Bewley-Huggett-

Aiyagari literature, individual risk is uninsurable because no asset is contingent on pro-

ductivity status. Second, agents face participation and borrowing constraints. Finally,

the insurance market against the aggregate shock is potentially incomplete.

2.4 Equilibrium definition

We start with security market clearing conditions, stating that aggregate demand should

be equal to total supply, which amounts to VX for stocks and VB for bonds. We define the

probability measure Λi
t, which describes the distribution of type-i agents as a function of

their security holdings and the history of their individual status.12 The market-clearing

conditions can therefore be written as:

∑
i=1,2

ˆ
R2×Et

xΛi
t(dx, db, dξ) = VX , and

∑
i=1,2

ˆ
R2×Et

bΛi
t(dx, db, dξ) = VB. (9)

Finally, by Walras’ law, the good market clears when asset markets clear.

We can now define a sequential competitive equilibrium.

Definition 1 (Sequential competitive equilibrium) A sequential competitive equi-

librium is a collection of allocations (cit, xit, bit)t≥0 for i = 1, 2 and of price processes

(Pt, Qt)t≥0 such that, for an initial distribution of stock and bond holdings and of id-

iosyncratic and aggregate shocks {(xi−1, b
i
−1, ξ

i
0)i=1,2, z0}, we have:

12More precisely, Λi
t : B(R)2 × B(Et) → [0, 1], where for any metric space X, B(X) denotes the borel

sets of X. As an example, Λi
t(X,BS , I) (with (X,BS , I) ∈ B(R)2 × B(Et)) is the measure of type-i

agents, with holdings in risky assets x ∈ X, in bonds b ∈ BS , and with an individual history ξ ∈ I.
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1. given prices, individual strategies solve the agents’ optimization program in (8);

2. the security markets clear at all dates: for any t ≥ 0, the equations in (9) hold; and

3. the probability measures Λi
t evolve consistently with individual strategies in each

period.

3 Equilibrium existence and asset price properties

In standard economies featuring uninsurable idiosyncratic shocks, credit constraints, and

aggregate shocks, the equilibrium cannot be explicitly derived since it involves a large

distribution of agents’ wealth. The usual strategy follows Krusell and Smith (1998) by

computing approximate equilibria assuming a recursive structure. However, as pointed

out by Heathcote, Stroresletten, and Violante (2009), the existence of such an equilibrium

is still an open question, despite Miao (2006) and Cao (2016) having proved the existence

of generalized recursive equilibria in this setup. In our economy, we are able to provide

some new results. Proposition 1 states the existence of an equilibrium and characterizes

its main theoretical properties.

Proposition 1 (Equilibrium existence) We assume that:

∀k ∈ {1, . . . , n}, β
(
α1(zk) + (1− α1(zk))

u′(δ1)
λ1

)
< 1. (10)

If security volumes (VB, VX) belong to a set V ⊂ R+ × R+ containing (0, 0) then an

equilibrium with the following features exists:

1. the end-of-period security holdings of unproductive type-1 and type-2 agents is 0 for

both risky and riskless assets;

2. the end-of-period stock holdings of type-2 agents is always 0;

3. the end-of-period security holdings of productive agents depend only on their type (1

or 2) and the current aggregate state; and
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4. security prices depend solely on the current aggregate state.

To prove equilibrium existence, we rely on the first-order conditions of the agents’

program, as in Coleman (1991). We derive these first-order conditions by following the

steps of the Theorem 4.15 proof in Stokey and Lucas (1989). Indeed, we cannot use the

Kuhn-Tucker theorem, as it assumes the space of allocations to be a Hermitian space and

this is not the case for the set of bounded real sequences (to which (cit), (eit), (xit), and

(bit) belong). The details of the proof can be found in the Section B Appendix.

The equilibrium exists under two conditions. The first, β(α1(zk)+(1−α1(zk))u
′(δ1)
λ1 ) <

1, ensures that stock prices are well-defined. If the condition does not hold, the stock

price can potentially be infinite because agents are too patient or their self-insurance

motive is too strong. This condition has a straightforward formal interpretation. In-

deed, first-order conditions yield an Euler equation, expressing the stock price Pt as Pt =

βEt
[
(α1

t + (1− α1
t )u′(δ1

t+1))(Pt+1 + yt+1)
]
. The condition β(α1(zk)+(1−α1(zk))u

′(δ1)
λ1 ) < 1

ensures that the mapping (Pt)t 7→
(
βEt

[
(α1

t + (1− α1
t )u′(δ1

t+1))(Pt+1 + yt+1)
])
t
is a con-

traction with a modulus strictly smaller than one. The Banach fixed-point theorem then

implies that the asset price is well-defined and finite. Of note, such a condition does

not appear in economies with only short-lived assets, which are simpler in this respect.

The second condition for equilibrium existence is that security volumes are restricted to

belong to a set V , that includes the zero volume case VX = VB = 0. This assumption

implies that security volumes should not be too high, which guarantees that agents are

credit-constrained when they become unproductive, as discussed below. The detailed

construction of the set V is provided in the Appendix.

We now discuss further the four points of Proposition 1. A first feature of the equi-

librium (point 1) is that productive agents hold securities while unproductive agents of

both types do not. Productive agents purchase securities for a standard consumption-

smoothing motive but also for a precautionary saving motive since they need to hedge

themselves against the risk of becoming unproductive in the next period. Since both

securities are in scarce supply – which is reflected in the set V – security prices are too
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high for unproductive agents to be able to hold any of these assets. In fact, given these

high prices and the expectation that they are likely to be productive, and thus better off,

in the future, unproductive agents would like to short securities in order to smooth their

consumption. However, credit constraints prevent them from doing so and they simply

hold no assets.

A second aspect of Proposition 1 (point 2) is the market segmentation for stocks:

only type-1 agents trade stocks, while type-2 do not. This stems from the presence of

stock market participation costs. In equilibrium, type-1 agents are rich enough to pay

the participation cost and therefore hold stocks. Conversely, type-2 agents are too poor

to pay the cost and therefore cannot trade stocks.

A third feature of our equilibrium (point 3) is that the saving choices of productive

agents depend solely on the current aggregate state and on the agent’s type. This property

relies on the linear-concave utility function, which implies that all productive agents of a

given type have the same marginal utility – which is independent of their past choices –

and therefore express the same demand for securities. The linear-concave utility function

also explains why security prices depend solely on the current aggregate state (point 4).

A consequence of Proposition 1 is that the equilibrium features limited heterogeneity.

All productive agents of a given type express the same demand for securities, while none

of the unproductive agents hold any securities. Furthermore, the beginning-of-period

security holdings of a given agent are either null if she was already unproductive before,

or equal to those of a productive agent if she was productive. Consequently, for each

agent type, the equilibrium only features four categories of agent, characterized by their

productivity status (productive or unproductive) in the current and previous periods.

We simplify our notations using Proposition 1. Since security prices depend only on

the current aggregate state, we call Pk the price of the risky asset and Qk the price of the

bond in state zk (k = 1, . . . , n). Similarly, we call bik the bond holdings of any productive

type-i agent in state zk (k = 1, . . . , n). Since type-2 agents do not trade stocks (x2 = 0),

productive agents hold all stocks and x1
k = VX

η1
k
. The equilibrium is therefore characterized

by a finite sequence of 4× n variables (b1
k, b

2
k, Pk, Qk)k=1,...,n.
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Several existence results can be found in the heterogeneous agent literature. In Huggett

(1993), agents trade short-lived riskless bonds in the absence of aggregate shocks. Kuhn

(2013) extends Huggett’s result to permanent idiosyncratic shocks.13 Miao (2006), Cao

(2016), and Cheridito and Sagredo (2016a and 2016b) prove the existence of an equilibrium

in an economy featuring asset trades, credit constraints, and idiosyncratic and aggregate

risks with a continuum of agents. They consider an economy with general preferences in

which agents can trade one type of short-lived asset (claims on capital). Our existence

result concerns a setup with limited participation and both a short- and long-lived asset.14

3.1 Asset price properties: Intuitions in simpler setups

Our model features heterogeneous uninsurable individual risk, aggregate risk, and positive

security volumes. We now examine, in turn, the role of the different model features.

In this section, and only in this section, we further simplify our setup to make the

mechanisms as transparent as possible. In particular, we make the following two as-

sumptions: (i) aggregate risk follows an IID process, and (ii) the productivity transition

probabilities αi and ρi are constant.

No idiosyncratic risk. As a first benchmark, we study the case where agents face

no idiosyncratic risk (i.e., αi = 1 for i = 1, 2). Due to limited participation, only type-1

agents trade stocks, whose constant price PNIR (NIR stands for “No Idiosyncratic Risk”)

verifies PNIR = βE[PNIR + ỹ], where ỹ is the next period’s uncertain dividend. The
13In their seminal paper, Duffie et al. (1994) consider endowment economies in which a finite number of

ex-ante heterogeneous agents face aggregate risks and trade long-lived assets with borrowing constraints.
They then prove the existence of ergodic equilibria with a recursive characterization, whose state space
includes all endogenous variables (such as prices). In a similar vein, Becker and Zilcha (1997) prove the
existence of a stationary equilibrium in a production economy with ex-ante heterogeneous agents facing
aggregate risk. Krebs (2006) proves the existence of a no-trade equilibrium in a Krusell-Smith economy.
Kubler and Schmedders (2002) prove the existence of a recursive equilibrium with a finite number of
agents. These papers consider a finite number of households. This assumption helps to prove existence
but makes the analysis of the equilibrium properties more difficult as all shocks are “aggregate”. It may
explain the wide use of a Bewley-type model with a continuum of agents.

14In our setup it would additionally be possible to prove that the sequential competitive equilibrium is
also a recursive competitive equilibrium in which the state variables are current aggregate and idiosyn-
cratic shocks and beginning-of-period security holdings for both agent types.
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gross average stock return RNIR
s is therefore constant and equal to β−1. The riskless

bond is traded by both agents and its price is QNIR = β. The riskless gross interest rate

RNIR
f is identical to the stock return. The equity premium in this environment is null:

RNIR
s − RNIR

f = 0. Here, limited participation does not in itself imply a non-zero risk

premium. This is related to the fact that, in our setup, security holders are endowed with

a constant marginal utility.

Zero volumes. We now assume that agents face heterogeneous but constant tran-

sition probabilities across idiosyncratic states. Aggregate risk affects dividends, while the

income of productive (ωi) and unproductive (δi) agents is constant. Moreover, we have

zero volumes of both riskless and risky securities, henceforth denoted by ZV.

In this economy, the equilibrium features complete asset market segmentation where

type-1 agents trade stocks and type-2 agents trade bonds if

κ2 > κ1, (11)

where: κi = (1− αi)(u
′(δi)
λi
− 1). (12)

The type-1 agents’ Euler equation for stocks is PZV = β(1 + κ1)(PZV + E z̃[y(z̃)]), or

alternatively:

PZV = β(1 + κ1)
1− β(1 + κ1)E

z̃[y(z̃)]. (13)

Regarding bonds, condition (11) implies that type-2 agents hold bonds, while they are

too expensive for type-1 agents:

QZV = β
(
1 + κ2

)
, (14)

QZV > β
(
1 + κ1

)
. (15)

We can take advantage of this simple zero-volume framework to further examine the

existence of an equilibrium. To do this, we need to check that type-2 unproductive agents
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are not willing to purchase bonds and that type-1 unproductive agents refuse to buy both

stocks and bonds.15 The conditions for type-1 agents can be expressed as:

PZV 1
λ1u

′(δ1) > β(1− ρ1 + ρ1 1
λ1u

′(δ1))(PZV + E z̃[y(z̃)]), (16)

QZV 1
λ1u

′(δ1) > β(1− ρ1 + ρ1 1
λ1u

′(δ1)), (17)

reflecting the fact that both securities are too expensive for type-1 unproductive agents.

Using the bond price expression (14), condition (17) on bonds can be simplified to (α2 +

(1 − α2)u
′(δ2)
λ2 ) 1

λ1u
′(δ1) > 1 − ρ1 + ρ1 1

λ1u
′(δ1), which is always true when (11) holds and

when u′(δ1) > λ1 (Assumption C). After substituting the stock price expression (13),

condition (16) becomes (α1 + (1 − α1)u
′(δ1)
λ1 ) 1

λ1u
′(δ1) > 1 − ρ1 + ρ1 1

λ1u
′(δ1), which also

always holds due to Assumption C. In brief, unproductive agents are never willing to

purchase securities. The assumption of a concave-linear utility function helps simplify the

Euler equations, since it avoids the dependence of productive agents’ marginal utilities in

their individual histories.

To conclude our equilibrium existence analysis, we need to verify whether individ-

ual consumption levels correspond to the proper concave or linear regions of the utility

function. Because of the zero-volume assumption, the consumption level of type-i unpro-

ductive agents is δi, while it is ωi for productive agents. Assumption C ensures that the

consumption of unproductive agents remains in the strictly concave region and that the

consumption of productive agents remains in the linear one.16

We can now state our main result in the zero-volume framework.

Proposition 2 (Zero volumes) In the zero-volume economy described above, the risk

premium is an increasing function of the heterogeneity in productivity risk:

RZV
s −RZV

f = 1
κ1 −

1
κ2 . (18)

15The condition regarding the non-participation of type-2 agents in the stock market is mainly a matter
of stock market participation cost and is not further analyzed here.

16Note that in presence of positive volumes, budget constraints are more significant and these conditions
are less likely to hold.
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The risk premium in equation (18) is strictly positive and reflects the combination of

market segmentation and idiosyncratic risk faced by both agent types. The heterogeneity

in productivity risk between the two types of agent is positively correlated with the equity

premium. On the one hand, when the self-insurance needs of type-2 agents increase, their

precautionary saving motive also increases as does their demand for riskless bonds, causing

the riskless return to decrease and the equity premium to rise. On the other hand, when

the self-insurance needs of type-1 agents fall, their demand for stocks is reduced and they

require a higher risky return to hold these stocks. As a result, the heterogeneous demand

for self-insurance – in combination with limited stock market participation – is sufficient

to generate a strictly positive risk premium, despite both asset payouts being uncorrelated

with agents’ marginal utilities (as a result of our utility specification).

Positive volumes. We now relax the assumption of zero volumes. For the sake of

simplicity, we assume that both bond and stock volumes are small, which allows us to

derive closed-form expressions – as first-order expressions – for the equity premium. In

addition, and to simplify the expressions, we assume that incomes are not time-varying:

δi and ωi are constant for i = 1, 2. Only stock dividends are time-varying. PV stands for

positive volume.

Proposition 3 (Positive volumes) If condition (11) holds, the economy will exhibit

the following features:

• the equity premium, compared to the ZV case, is augmented by two terms: one

reflecting the security supply and the other reflecting the equity risk:

RPV
s −RPV

f ≈ RZV
s −RZV

f︸ ︷︷ ︸
=ZV risk premium

+β(1− α1)
−u′′(δ1)

λ1

α1 + (1− α1)u′(δ1)
λ1

(19)

×


E
[
PZV + y(z̃)

]
PZV

(Et
[
PZV + y(z̃)

] VX
η1 + b1)︸ ︷︷ ︸

=wealth effect

+
V
[
PZV + y(z̃)

]
PZV

VX
η1︸ ︷︷ ︸

=liquidation premium


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• the bond holdings of productive agents are such that

– either b1 = 0 and η2b2 = VB in case of (endogenous) complete market separa-

tion; or

– b1 ≥ 0 and b2 ≥ 0. Bond holdings are then determined by idiosyncratic risk

heterogeneity and security volumes:

η2(µ1 + µ2)b2 ≈ κ2 − κ1 + µ1(E z̃[PZV + y(z̃)]VX + VB), (20)

η1(µ1 + µ2)b1 ≈ κ2 − κ1 − µ1E z̃[PZV + y(z̃)]VX + µ2VB, (21)

with: µi = −(1− αi)u
′′(δi)
ηiλi

> 0.

This proposition illustrates the effect of positive asset volumes on the equity premium

and on bond trading. Regarding the equity premium, equation (19) shows that the equity

premium is the sum of three terms. The first term RZV
s −RZV

f is the equity premium for

zero volumes – described above – and reflects market segmentation and heterogeneity in

precautionary saving motives. The second term, proportional to Et
[
PZV + y(z̃)

]
, reflects

the wealth effect generated by security holdings. When security holdings rise, productive

type-1 agents become better insured against productive risk. These agents therefore face

a smaller precautionary saving motive, which causes the risky return and the equity

premium to rise. The third term, proportional to V
[
PZV + y(z̃)

]
, reflects the liquidation

premium related to the co-movement of unproductive consumption with the asset price.

If type-1 agents become unproductive and liquidate their portfolio, they will consume the

quantity δ1 +
(
PZV + y(z̃)

)
VX
η1 + b1, which will be high when the asset payoff is high and

low otherwise. This positive co-movement of asset price and consumption undermines the

hedging properties of stock holdings and explains why agents want to be compensated

for this liquidation risk. Since bond payoffs are riskless, there is no bond liquidation

premium.

Equations (20) and (21) determine the demand for bonds (in the absence of full market

segmentation). From (20), we deduce that the bond demand b2 of type-2 agents is mainly
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driven by two factors, heterogeneity in idiosyncratic risk and security volumes. The first

factor, the heterogeneity in idiosyncratic risk, –κ2−κ1–, reflects the competition between

the two agents to hold the same asset. When the productivity risk for type-2 agents

compared to type-1 agents increases, the precautionary motive of type-2 agents compared

to type-1 agents also rises, and they purchase more bonds. The second determinant –

proportional to µ1– is the total quantity of securities available for self-insurance purposes.

When the security supply increases, the bond price falls and type-2 agents can purchase

more bonds. For type-1 agents, the intuition is similar except for the role of stock volumes.

Type-1 agents can purchase either stocks or bonds, which are therefore partly substitutes.

An increase in stock volumes makes stock cheaper and crowds out bonds in favor of stocks

for type-1 agents – this is the term proportional to µ2.

3.2 Equilibrium structure

We now characterize the equilibrium properties in the general case. Because our equilib-

rium features limited heterogeneity, we can state the next proposition that provides asset

price expressions.

Proposition 4 (Equilibrium properties) Two distinct subsets exist, denoted by Ii ⊂

{1, . . . , n} (i = 1, 2), characterizing the states of the world in which only type-i agents

trade bonds, such that the 4 × n variables (b1
k, b

2
k, Pk, Qk)k=1,...,n defining the equilibrium
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are given by the following 4× n equations:

Pk = β
n∑
j=1

πkj(α1
k + (1− α1

k)
1
λ1u

′(δ1 + (Pj + yj)
VX
η1
k

+ b1
k))(Pj + yj), k ∈ {1, . . . , n},

(22)

Qk = β
n∑
j=1

πkj(α1
k + (1− α1

k)
1
λ1u

′(δ1 + (Pj + yj)
VX
η1
k

+ b1
k)), k ∈ {1, . . . , n} − I2, (23)

Qk = β
n∑
j=1

πkj(α2
k + (1− α2

k)
1
λ2u

′(δ2 + b2
k)), k ∈ {1, . . . , n} − I1, (24)

VB = η1
k b

1
k and 0 = b2

k, k ∈ I1, (25)

VB = η2
k b

2
k and 0 = b1

k, k ∈ I2, (26)

VB = η1
k b

1
k + η2

k b
2
k, k ∈ {1, . . . , n} − I1 − I2. (27)

This equilibrium structure can be thought of in two ways. First, we can consider it

as a generalization of the no-trade equilibria studied in Krusell, Mukoyama, and Smith

(2011), in which we allow for limited participation and for positive traded volume. Second,

this equilibrium structure can be considered as a simplification of the general incomplete-

market equilibrium, where credit constraints always bind after one period of unemploy-

ment. In any case, this limited-heterogeneity equilibrium allows us to study the effect of

volume on asset prices. We now discuss the effects.

Our equilibrium is characterized by equalities (22)–(27). The first three sets of Euler

equations provide security prices. Due to limited stock market participation, the risky

asset price is only defined by the Euler equation (22) of productive type-1 agents, who hold

all the stocks. The equation can be interpreted as follows. The price Pk in state k is equal

to the discounted value of asset payoffs discounted by the intertemporal marginal rate of

substitution (henceforth, MRS). The probability that the agent remains productive in the

next period in state j, with marginal utility λ1 is πkjα1
k. Her MRS in that case is thus

simply equal to 1, while the asset payoff is Pj+yj. The probability that the agent becomes

unproductive in state j is πkj(1−α1
k). When the agent becomes unproductive, she will sell

the whole portfolio (and remain credit-constrained) and will be endowed with the marginal
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utility u′(δ1 + (Pj + yj) VX
η1
k

+ b1
k), which explains the MRS of 1

λ1u
′(δ1 + (Pj + yj) VX

η1
k

+ b1
k).

Note that in spite of having a constant marginal utility, productive agents do not behave

as if they were risk-neutral. Incomplete markets and the possibility of being unproductive

and credit-constrained in the next period affect their pricing.

Regarding bonds, they may be purchased by productive type-1 or type-2 agents de-

pending on the state of the world. Since our equilibrium features security prices that

depend solely on the current state of the world, there is one subset of states of the world,

characterized by the index subset I1, in which only type-1 agents hold bonds, while type-

2 agents do not. In states of the world I1: (i) the Euler equation (24) of type-2 agents

does not hold and (ii) the bond supply equals the demand of type-1 agents in equation

(25). By the same token, there are states of the world, characterized by the subset index

I2, in which only type-2 agents buy bonds, while type-1 agents only buy stocks. This

corresponds to the Euler equation (23) and the resource equality (26). Subsets I1 and

I2 are potentially empty. Finally, in remaining states of world, i.e., those belonging to

{1, . . . , n} − I1 − I2, both type-1 and type-2 agents purchase bonds. The interpretation

of equations (23)–(24) is the same as for (22)

Note that we need to explicitly check that the equilibrium exists, and that the con-

sumption levels implied by equations (22)–(27) are consistent with the equilibrium struc-

ture. For example, we need to verify that unproductive agents are actually credit-

constrained at the equilibrium. These conditions, discussed in Section 4 of the Appendix,

implicitly define the set V of admissible security supplies VX and VB.

3.3 Discussion of our assumptions

As explained in the discussion of Proposition 1, our equilibrium relies on two assump-

tions: (i) the linear sections of the utility function and (ii) the upper bound on security

volumes. The concave-linear utility function generalizes Fishburn’s (1977) contribution.

The shape of the period utility function implies that agents with a low consumption level

are sensitive to small variations in consumption levels, while agents consuming a higher
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amount (i.e., those in a linear part) have a marginal utility that is invariant to small

changes in consumption. However, these agents are not risk neutral since they can expe-

rience a significant increase in marginal utility if they are hit by a negative idiosyncratic

shock that forces them to consume a low amount (which would be valued by the strictly

concave part of the utility function). The concave-linear utility function accounts for

extensive variations in consumption due to individual shocks but neglects the impact of

small intensive variations. We consider this a simplified but relevant representation of

consumption smoothing and of behavior with respect to idiosyncratic risk.

The upper bound on security volumes is the second important assumption. For our

limited-heterogeneity equilibrium to exist, we have to limit the amount of self-insurance,

such that unproductive agents remain credit-constrained. This assumption is not unreal-

istic for the bottom 50% of US households. For the top 50%, we justify our assumption by

the fact that the assets considered here represent only a small share of the total amount

of assets observed in the data. Not all assets are available for self-insurance, either be-

cause they are not liquid (such as stocks locked in retirement plans – see Kaplan and

Violante 2014a and Kaplan, Violante, and Weidner 2014b) or because households do not

wish to trade them (due to the so-called portfolio inertia reported in Brunnermeier and

Nagel 2008 and in Bilias, Georgarakos, and Haliassos 2010). The modeling strategy is

thus relevant for agents who have relatively few assets to self-insure, or if one assumes

that the main tools available for self-insurance are captured in the income process (as a

reduced form). Our small-trade equilibrium therefore enables us to analyze the effect of

additional liquidity.

Other assumptions are much less critical with respect to the existence of our equilib-

rium. For instance, Assumption A could be replaced by a less strict assumption, at the

cost of a greater number of agent classes in the equilibrium. As discussed in Footnote

9, we could also allow agents to hold negative wealth, as long as the borrowing limit is

not too loose. Our equilibrium would still exist, provided that the set V of admissible

volumes in Proposition 1 is changed accordingly.17

17There is a degree of substitution between the negative wealth constraint and the maximal bounds
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4 Quantitative exercise

We now illustrate our model mechanisms in a quantitative exercise, using a plausible

calibration for model parameters.

Assumption B implies that only type-1 agents hold stocks, while type-2 do not. This

is consistent with the empirical observation that only 50% of US households hold stocks

either directly or indirectly and that stock-holders are mostly in the top 50% of the income

distribution (Bricker et al. 2014). We identify type-1 participating households as being in

the top 50% of US households in terms of income distribution (henceforth the top 50%)

and type-2 non-participating agents as being in the bottom 50% (henceforth the bottom

50%).

Model parameters are divided into two groups. First, we calibrate certain parameters

to standard values (that ensure the existence of an equilibrium). Second, we use the

tractability of our framework to simulate the model to match several targets (described

below).

4.1 Parameter restrictions

4.1.1 Aggregate risk and asset volumes

The period is a quarter. There are two aggregate states (n = 2), which can be either G

(for good) – corresponding to a boom – or B (for bad) – corresponding to a recession.

For transition probabilities, we rely on Hamilton’s (1994) estimation for recessions and

booms and choose πGG = 0.75 and πBB = 0.5. The good state is thus more persistent

than the bad one.

The volumes of assets are chosen to ensure that our equilibrium exists and we set

VX = 0.002 for stocks and VB = 0.1 for bonds.

(in V), permitting the existence of an equilibrium.
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4.1.2 Preference parameters

The shape of the period utility function ũ is defined by three parameters – see (3). First,

we set ũ(c) = log(c) in the concave part. Second, to avoid arbitrariness in the choice of

the slopes λ1 < λ2 of the two linear parts, we require them to be equal to the derivatives

– computed at the relevant point – of the utility function log(c):

λi = 1
ci,ppGG

, i = 1, 2, (28)

where ci,ppGG is the consumption level of type-i = 1, 2 agents, who have been productive for

at least two consecutive periods, while the aggregate state is G and was G in the previous

period. Our choice for λ1 and λ2 is consistent with our interpretation of the linear parts

in the utility function as an approximation of a more general utility function. Obviously,

the values of consumption level ci,ppGG in turn depend on λi, which implies that equation

(28) defining λi in fact involves solving a fixed-point problem.

4.1.3 Parameter restrictions

To bring discipline to the calibration strategy, we impose some further constraints on the

model parameters, which are consistent with the mechanisms identified in Section 3.1. We

first set ω1
B = 1.0 to scale the income process of type-1 agents. Second, we set η1

k = η2
k = η

(k = G,B) such that a constant fraction of the population is productive in every period.

Third, we assume that the income risk faced by type-2 agents is not time-varying, such

that ω2 ≡ ω2
G = ω2

B. Finally, we assume that the average value of dividends is y = 1, such

that only the ratio yG/yB is used in the calibration strategy.

4.2 Calibration

We are left with 11 parameters to calibrate: the discount factor β, the dividend process

yG/yB, and 9 parameters driving the income process: 4 probabilities αik (i = 1, 2 and

k = G,B), 4 income levels ω1
G, ω2, δ1, δ2, and the share η of productive agents. Using
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equation (1), the values of ρik1k2 (i = 1, 2 and k1, k2 = G,B) are uniquely determined by

the values of η and αik for i = 1, 2 and k = G,B. To calibrate these 11 parameters, we

match 12 empirical targets, which we denote by T = [T1, . . . , T12].

4.2.1 Consumption and household risk exposure

We first target parameters concerning consumption risk. In line with the literature (Parker

and Vissing-Jorgensen, 2009, among others), the risk faced by each category of household

is proxied by the volatility of the consumption growth rate for non-durable goods and

services. Consumption is measured by quarterly expenditures on non-durable goods and

on a subset of services deflated with the relevant price index. We use data from the

Consumer Expenditure Survey (CEX) from 1980 to 2007.18 A detailed discussion can be

found in Appendix F. Our first two targets are the standard deviations of the quarterly

consumption growth rate for the top 50%, equal to T1 ≡ σ(∆logC1) = 0.14, and for

the bottom 50%, equal to T2 ≡ σ(∆logC2) = 0.19. The bottom 50% face higher total

risk than the top 50%, as is standard in the literature. Our third target is the standard

deviation of aggregate consumption, which is T3 ≡ σ(∆logCtot) = 1%. This last value is

not implied by the first two targets, because of agent heterogeneity.

We also target the exposure of both groups to aggregate shocks. Following Parker and

Vissing-Jorgensen (2009), we compute, for each group, the coefficient equal to: (Change in

real group consumption per household)∗(Group share of population)/(Lagged aggregate

real consumption per household).19 The coefficients, which sum to one for both groups,

can be interpreted as the fraction of aggregate risk born by each group. According to

this metric, the top 50% bear T4 ≡ S1 = 84% of aggregate risk, whereas the bottom

50% bear the remaining 16%. Finally, the consumption share of the top 50% amounts to
18In what follows, we apply the methodology of Parker and Vissing-Jorgensen (2009) to a different

subset of households in order to be consistent with our model. It is generally accepted that consumption
data are not as accurate as data on household income (see Aguiar and Bils, 2015, among others, for a
discussion). Nevertheless, as our results are consistent with those derived using different datasets, we are
confident that the facts presented here are robust.

19This measure does not depend on the share of type-1 agent consumption in total consumption, as
explained by Parker and Vissing-Jorgensen (2009).

27



T5 ≡ C1/Ctot = 72.1%, which drives consumption inequalities in our economy.

4.2.2 Asset returns and the dividend process

We target four moments for stock and bond returns, and three moments for the dividend

process. These seven moments are taken from Campbell’s (1999) dataset. First, the stock

returns are computed from the S&P 500 index, while the bond returns are computed from

the six-month commercial paper rate. For ease of comparison, these returns are annualized

quarterly real returns and correspond to historical US data from 1890–1991. The average

bond interest rate is T6 ≡ E(Rf ) = 0.9%, while the standard deviation of the bond interest

rate is T7 ≡ σ(Rf ) = 1.7%. The average stock return is equal to T8 ≡ E(Rs) = 8.1%,

while its standard deviation is T9 ≡ σ(Rs) = 15.6%. The last three targets are the

average price dividend ratio T10 ≡ E(Ps/D) = 21, the standard deviation of the log of the

price dividend ratio T11 ≡ σ(log(Ps/D)) = 30%, and the standard deviation of the log of

dividend growth T12 ≡ σ(∆log(D)) = 28.3%.

4.2.3 Parameter values

Table 1 presents the model parameter values. First, we find that the income of type-1

agents barely moves, as the income in the good state ω1
G = 1.01 is very close to the income

in the bad state ω1
B = 1. As a consequence, time variation in the income process is mostly

driven by time-varying probabilities. The probabilities α1
G, α1

B, α2
G, and α2

B oscillate

around the value of 0.9, which is close to, but slightly lower than, the value obtained when

identifying idiosyncratic risk with employment risk. In fact, using US data from 1948Q1-

2007Q4, the quarterly probability of remaining employed equals 0.953, based on Shimer’s

(2005) methodology (see Challe and Ragot, 2014). The share of productive agents is

η = 0.89. The discount factor β amounts to 0.86, which ensures the existence of an

equilibrium (see condition (10)) and a realistic price-dividend ratio. This discount factor

is lower than the typical value used in complete-market models. Incomplete insurance-

market models are known to require a lower discount factor to reach the same average

returns (for instance Krusell, Mukoyama, and Smith et al. 2011). The dividend process
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yG/yB = 1.12 allows us to match the standard deviation of the dividend quarterly growth

rate. Finally, the two preference parameters λ1 and λ2 are described by equation (28).

Calibrated parameters “Equilibrium” parameters
πGG πBB σ ω1

B VX VB λ1 λ2

0.75 0.50 1 1 0.002 0.1 0.99 2.25
Other parameters
α1
G α1

B α2
G α2

B ω1
G ω2

G = ω2
B δ1 δ2 η β yG/yB

0.91 0.94 0.90 0.88 1.01 0.45 0.32 0.07 0.89 0.86 1.12

Table 1: Parameter values

4.3 Results

Table 2 summarizes the targets and model outcome. Based on simplifying assumptions –

such as the volume of securities – the model provides reasonable quantitative outcomes.

Consumption growth volatilities are close to their empirical counterpart, as are financial

returns. We find a low return for the safe asset and a high equity premium of 7%.

US Data Model Description and Remarks
Consumption Growth
σ(∆logC1)(in %) 14 15 std. dev. of agg. type 1 cons. growth
σ(∆logC2)(in %) 19 22 std. dev. of type 2 cons. growth
σ(∆logCtot)(in %) 1.0 1.0 std. dev. of agg. cons. growth

S1(in %) 84 85 share of agg. risk born by type 1
C1/Ctot(in %) 72 70 cons. share of type 1 in agg. cons.

Asset Returns
E(Rf )(in %) 0.9 0.9 average safe return
σ(Rf )(in %) 1.7 1.2 std. dev. of the safe return
E(Rs)(in %) 8.1 7.9 average risky return
σ(Rs)(in %) 15.6 6.8 std. dev. of the risky return

Price-Dividend (P/D) Ratio
E(Ps/D) 21 13 average P/D ratio

σ(log(Ps/D))(in %) 30 17 std. dev. of log of P/D ratio
σ(∆log(D))(in %) 28.3 27.7 std. dev. of log dividend growth

Note: See the text for a description of the statistics.

Table 2: Targets and model outcomes
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The model also generates average moments of asset returns that are broadly in line

with the data, although the risky return is more volatile than in the data. Finally, we find

that the average income of type-1 agents is roughly twice as high as for type-2 agents.

These values are consistent with empirical estimates of the skill premium, which is between

1.4 and 1.7 (Murphy and Welch, 1992) and with the fact that populations of skilled and

unskilled workers have remained roughly the same size over the last 20 years (Mukoyama

and Sahin, 2006).

Implicit valuation of the risky asset by type-2 agents. In Assumption B, we set a

high participation cost for type-2 agents to ensure that they did not trade any stock. In

equation (29), we provide a value of χ2 to ensure that holding stocks is the dominated

choice. Based on our calibration and the median annual income of US households of

$52,250 in 2014, we find an annual participation cost of $33. This is relatively small

compared to other participation cost estimates (Vissing-Jorgensen, 2002, among others).20

Role of participation costs. The ability of the previous model to reproduce asset prices

crucially relies on limited participation in the stock market. To examine this, we perform

the same quantitative analysis as in the previous section, however we relax Assumption

B and set all participation costs to zero: χ1 = χ2 = 0. As explained in Proposition 4,

both types of agents may trade stocks and bonds. We provide the full model in Appendix

H. We re-calibrate the model without participation costs and find that the safe and risky

returns are almost identical and equal to 7.0%. The model without participation costs

thus fails to reproduce realistic asset prices.21

20As this calibration may depend on the small volume of debt, we also compute the implicit valuation
of the risky asset by type-2 agents (i.e., their valuation with their own pricing kernel). We find that
type-2 agents will never participate in the stock market, even if they face a proportional participation
cost as low as 1.1%.

21The role of participation costs in asset prices confirms the findings of Guvenen (2009) in a model with
heterogeneous preferences. Krusell, Mukoyama, and Smith (2011) have shown that in such an economy, it
is not possible to reproduce empirical asset prices with realistic idiosyncratic risks and a low risk aversion.
Participation cost is thus a key ingredient of our model’s ability to match empirical data.
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5 Conclusion

We have constructed an analytically tractable incomplete insurance-market model with

limited participation in financial markets, heterogeneity in risk exposure, and aggre-

gate shocks. Our small-trade equilibrium relies on not-too-large security volumes and

a concave-linear utility function, as introduced by Fishburn (1977). Although simple, this

model satisfactorily reproduces asset price properties and household risk exposure. This

parsimonious setup could be used to study other forms of heterogeneity with aggregate

shocks and, for instance, the heterogeneity of agents in terms of the two sides of their

balance sheet (i.e., asset and liability sides). This would allow us to study financial inter-

mediation in an incomplete market setting with aggregate shocks. Such an environment

could improve our understanding of the way that financial markets function.
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Appendix

A Participation costs
We now derive explicitly the condition on the participation cost χ2 of Assumption B for
type-2 agents to never participate in the stock market. This cost is such that participating
in the stock market is a dominated strategy, no matter the state of the world.

If type-2 agents participate in stock markets, their portfolio choice is denoted {x̃2
k, b̃

2
k}k=1,...,n

given equilibrium prices (Pk, Qk)k=1,...,n. Purchasing the stock quantity x̃2
k is a dominated

strategy in any state k, if investing the same amount in bonds offers in every state a
greater payoff. Due to participation cost, purchasing x̃2

k costs Pkx̃2
k + χ2 and pays off

x̃2
k(Pj + yj) in the next period when the state of the world is j = 1, . . . , n. Investing the

same amount Pkx̃2
k + χ2 in bonds pays off Pkx̃

2
k+χ2
Qk

units of consumption in all states of
the next period. In consequence, if Pkx̃

2
k+χ2
Qk

> x̃2
k(Pj +yj) for any k, j, type-2 agents never

wish to trade stocks. We deduce the following expression for χ2 that ensures Assumption
B to hold:

χ2 = max
k,j=1,...,n

(Qk(Pj + yj)− Pk)x̃2
k. (29)

Following the same steps as in Proposition 4, we obtain for {x̃2
k, b̃

2
k}k=1,...,n:22

Pk ≥ β
n∑
j=1

πkj(α2
k + (1− α2

k)
1
λ2u

′(δ2 + (Pj + yj)x̃2
k + b̃2

k))(Pj + yj), k ∈ {1, . . . , n}, (30)

Qk ≥ β
n∑
j=1

πkj(α2
k + (1− α2

k)
1
λ2u

′(δ2 + (Pj + yj)x̃2
k + b̃2

k)), k ∈ {1, . . . , n} − I2, (31)

where (30) and (31) hold with equality if x̃2
k > 0 and b̃2

k > 0 respectively.

B Proof of Proposition 1
We prove that the market arrangement implied by Assumption B, in which type-1 agents
trade stocks, while type-2 do not, is an equilibrium. We proceed in two steps: (i) we
prove that we can find prices and quantities such that equations (22)–(27) hold and
(ii) we check that unproductive agents do not participate in security markets and that
equilibrium consumption levels lie in proper definition sets of the utility function.

22We have used the fact that credit constraints bind for unproductive type-2 agents after this deviation,
which is true in the equilibrium under consideration.

32



First step: the existence of prices and quantities. We define a correspondence on
a compact set to invoke the Kakutani’s fixed-point theorem. First, we define the compact
convex sets Db = {b ∈ R : VB ≥ b ≥ 0} and Dp = {(P,Q) ∈ R2 : P ≤ P ≤ P and 0 ≤
Q ≤ Q} with P = βminz∈Z α1(z)y(z)

1−βminz∈Z βα1(z) > 0, P = βmaxz∈Z(α1(z)+(1−α1(z)) 1
λ1 u

′(δ1))y(z)
1−βmaxz∈Z α1(z)+(1−α1(z)) 1

λ1 u
′(δ1) ≥ P and

Q = maxz∈Z β(α2(z) + (1− α2(z)) 1
λ2u

′(δ2)).23

We define the following correspondence ψp : F(Z,Db)⇒ P (F(Z,Dp)), as:24

ψp(b) = {(P,Q) ∈ F(Z,Dp)|

P = βEz[(α1(z) + (1− α1(z)) 1
λ1u

′(δ1 + (P (z′) + y(z′)) VX
η1(z) + VB − b

η1(z) ))(P (z′) + y(z′))],

Q = βEz[α2(z) + (1− α2(z)) 1
λ2u

′(δ2 + b

η2(z))]
}
,

where Ez[ζ] = ∑
z′∈Z πzz′ζz′ is the conditional expectation of ζ.

If security demands solely depend on the current aggregate and idiosyncratic states,
we deduce from Assumption A that the bond market clearing implies that ∀z ∈ Z, b2(z) =
b(z)
η2(z) and b1(z) = VB−b(z)

η1(z) where bi denotes the bond demand of a type-i agent (i = 1, 2).
We introduce the correspondence ψx : F(Z,Dp)⇒ P (F(Z,Db)), as follows:

ψx(P,Q) =
{
b ∈ F(Z,Db)|T pP,Q(b) = 0, VB ≥ b(z) ≥ 0

}
(32)

where ∀(P,Q) ∈ F(Z,Dp), T pP,Q : b ∈ F(Z,Db) 7→ ∀z ∈ Z,
(VB − b(z))× 1

Ez [α2(z)+(1−α2(z)) 1
λ2 u

′(δ2+ VB
η2(z)

)]>Ez [α1(z)+(1−α1(z)) 1
λ1 u

′(δ1+(P+y(z′)) VX
η1(z)

)]

+ b(z)× 1
Ez [α2(z)+(1−α2(z)) 1

λ2 u
′(δ2)]<Ez [α1(z)+(1−α1(z)) 1

λ1 u
′(δ1+(P+y(z′)) VX

η1(z)
+ VB
η1(z)

)]

+ (Ez[α2(z) + (1− α2(z))
u′(δ2 + b(z)

η2(z))
λ2 ]

− Ez[α1(z) + (1− α1(z))
u′(δ1 + (P + y(z′)) VX

η1(z) + VB−b
η1(z) )

λ1 ])

× 1
Ez [α2(z)+(1−α2(z)) 1

λ2 u
′(δ2+ VB

η2(z)
)]≤Ez [α1(z)+(1−α1(z)) 1

λ1 u
′(δ1+(P+y(z′)) VX

η1(z)
)]

× 1
Ez [α2(z)+(1−α2(z)) 1

λ2 u
′(δ2)]≥Ez [α1(z)+(1−α1(z)) 1

λ1 u
′(δ1+(P+y(z′)) VX

η1(z)
+ VB
η1(z)

)],

where 1A = 1 if A is true and 0 otherwise. The mapping T pP,Q considers the three possible
23It will be straightforward to check that equilibrium prices and quantities respectively belong to Dp

and Db.
24Correspondences are set-valued functions (see Mas-Collel, Whinston and Green(1995), Section M.H).
P(?) is the set of all subsets of ?. For any compact K, F(Z,K) is the set of functions from Z to K and
is isomorphic to Kn (and thus compact) since Z is of a cardinal n.
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cases of bond market participation. Bonds are traded by: (i) only type-2 agents, (ii)
only type-1 agents and (iii) both agents. These three cases correspond to three mutually
exclusive conditions. We can therefore check that ψx is compact- and convex-valued and
upper semi-continuous (since it is compact-valued and its graph is closed).25 ψx is also
non-empty: either there is complete market separation (with only type-1 or type-2 agents
holding bonds), or both types of agents trade bonds.

Regarding ψp, we can also check that ψp is compact- and convex-valued and upper
semi-continuous. We need to prove that ψp is not empty. Define the mapping T x from
(bC(Z ×Db), ‖·‖∞) onto itself as follows:26

T x : X 7→ y(z) + βEz

[
(α1(z) + (1− α1(z)) 1

λ1u
′(δ1 +X(z′, ·) VX

η1(z) + VB − b
η1(z) ))X(z′, ·)

]
,

where we can find β such that for all z ∈ Z,X ∈ bC(Z × Db) , 0 < β(α1(z) + (1 −
α1(z)) 1

λ1u
′(δ1 + X VX

η1(z) + VB−b
η1(z) ))) ≤ β < 1 (condition (10)). We wish to prove that T x is

a contraction. For X,X ′ ∈ bC(Z ×Db), T xX − T xX ′ becomes after some manipulation:

T xX − T xX ′ = βEz
[
(α1(z) + (1− α1(z)) 1

λ1u
′(δ1 +X

VX
η1(z) + VB − b

η1(z) ))
(
X −X ′

)]
+ βEz

[
(1− α1(z)) 1

λ1

(
u′(δ1 +X

VX
η1(z) + VB − b

η1(z) ))− u′(δ1 +X ′
VX
η1(z) + VB − b

η1(z) ))
)
X ′
]
.

We want to bound ‖T xX − T xX ′‖∞. The first term can be bounded by β ‖X −X ′‖∞.
The second term is null when VX = 0. Let

VT =
{

(VX , VB) ∈ (R+)2| sup
b∈Db,X,X′∈bC(Z×Db)

β(1− α1(z)) 1
λ1∣∣∣∣∣u′(δ1 +X

VX
η1(z) + VB − b

η1(z) ))− u′(δ1 +X ′
VX
η1(z) + VB − b

η1(z) ))
∣∣∣∣∣ |X ′| < (1− β) ‖X −X ′‖∞

}
.

Note that VT is not empty since it contains at least (0, 0) and, by continuity of u′′,
contains an open set containing (0, 0). By construction, for (VX , VB) ∈ VT , we have
‖T xX − T xX ′‖∞ < ‖X −X ′‖∞. Edelstein’s fixed-point theorem implies then that T x

25Considering φ : p 7→
{
x ∈ [x, x], (x− x)1p>k2 + (x− k2−p

k2−k1
x− p−k1

k2−k1
x)1k2≥p≥k1 + (x− x) 1p<k1 = 0

}
(k2 > k1) may clarify this point. φ(p) = {x} for p > k2; φ(p) = { k2−p

k2−k1
x+ p−k1

k2−k1
x} for k2 ≥ p ≥ k1 and

φ(p) = {x} for p < k2. The set {(p, φ(p)) , p ∈ R} is closed.
26bC(?) is the set of continuous bounded functions over the metric space ?, endowed with the sup.

norm.

34



admits a unique X ∈ bC(Z ×Db) such that:

X(z, b) = y + βEz

[
(α1(z) + (1− α1(z)) 1

λ1u
′(δ1 +X(z′, ·) VX

η1(z) + VB − b
η1(z) ))X(z′, ·)

]
.

We have just proven that the stock price P (·) = X(·)−y is well-defined and is a continuous
function of bond demand. We deduce that ψp is not empty.

We finally define the correspondence ψ : ((P,Q), b) ∈ F(Y,Dp)×F(Y,Db)⇒ (ψp(b), ψx(P,Q)) ∈
P(F(Y,Dp) × F(Y,Db)). Since ψp and ψx are non-empty, compact- and convex-valued
and upper semi-continuous, ψ also is. The Kakutani’s theorem then ensures the existence
of a fixed point ((P ∗, Q∗), b∗) ∈ (ψp(b∗), ψx(P ∗, Q∗)). It is then straightforward to check
that this fixed-point defines a competitive equilibrium.

We now check that unproductive agents are kept out of the financial market.

Second step: unproductive agents do not participate in security markets.
First note that the fixed-point generates an equilibrium with endogenous bond market
participation of productive type-1 and type-2 agents. However, we need to determine, un-
der which conditions unproductive agents of both types choose not to trade any security.

Security zero-supplies. We first assume VX = VB = 0. No security is traded and
security prices are given by:

P (z) = β(α1(z) + (1− α1(z)) 1
λ1u

′(δ1))Ez [(P (z′) + y(z′))] , (33)

Q(z) = β(α2(z) + (1− α2(z)) 1
λ2u

′(δ2)). (34)

The equilibrium existence conditions are as follows (here ẑ is the former state, z the
current one and z′ the next one):

P (z) 1
λ1u

′(δ1) > βEz
[
(1− ρ1(z, z′) + ρ1(z, z′) 1

λ1u
′(δ1))(P (z′) + y(z′))

]
, (35)

Q(z) 1
λ1u

′(δ1) > β(1− Ez
[
ρ1(z, z′)

]
+ Ez

[
ρ1(z, z′)

] 1
λ1u

′(δ1)), (36)

Q(z) 1
λ2u

′(δ2) > β(1− Ez
[
ρ2(z, z′)

]
+ Ez

[
ρ2(z, z′)

] 1
λ2u

′(δ2)). (37)

First notice that condition (35) can be expressed using (33) as:

Ez

[(
α1(z) + (1− α1(z)) 1

λ1u
′(δ1)) 1

λ1u
′(δ1)− (1− ρ1(z, z′) + ρ1(z, z′) 1

λ1u
′(δ1))

)
(P (z′) + y(z′))

]
> 0.
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For conditions (35)–(37) to hold, it is sufficient that using (33)–(34), we have:

(α1(z) + (1− α1(z)) 1
λ1u

′(δ1)) 1
λ1u

′(δ1) > 1−Ez
[
ρ1(z, z′)

]
+Ez

[
ρ1(z, z′)

] 1
λ1u

′(δ1), (38)

(α2(z) + (1− α2(z)) 1
λ2u

′(δ2)) 1
λ1u

′(δ1) > 1−Ez
[
ρ1(z, z′)

]
+Ez

[
ρ1(z, z′)

] 1
λ1u

′(δ1), (39)

(α2(z) + (1− α2(z)) 1
λ2u

′(δ2)) 1
λ2u

′(δ2) > 1−Ez
[
ρ2(z, z′)

]
+Ez

[
ρ2(z, z′)

] 1
λ2u

′(δ2). (40)

We can check that equations (38) and (40) can be seen as positivity inequalities of poly-
nomial functions in 1

λ1u
′(δ1) and 1

λ2u
′(δ2) respectively. Each polynomial function admits

one negative root and another root equal to 1. Both polynomials are thus always positive
since 1

λ1u
′(δ1) > 1 and 1

λ2u
′(δ2) > 1 (see Assumption C). Conditions (38) and (40) there-

fore always hold. The condition (39) can similarly be written as a positivity inequality
of a polynomial function in 1

λ1u
′(δ1) and 1

λ2u
′(δ2), which is increasing in both arguments.

We therefore deduce that: (i) when 1
λ1u

′(δ1) ≥ 1
λ2u

′(δ2), condition (39) holds whenever
condition (40) does and (ii) when 1

λ1u
′(δ1) ≤ 1

λ2u
′(δ2), condition (39) holds whenever

condition (38) does. In consequence, condition (39) always holds.
We finally check that consumptions of productive (resp. unproductive) agents lie in

the linear (resp. concave) part of the utility function. Since our equilibrium features
limited-heterogeneity, there are only 4 different agents classes per type, each of which
depends on the current and past productive status. For instance, ci,puẑ,z is the consumption
of type-i agents, who are currently unproductive (in state z) but were productive in the
previous period (in state ẑ). The consumption levels of the different classes (i = 1, 2)
are: ci,ppẑ,z = ci,upẑ,z = ωi(z) and ci,puẑ,z = ci,uuẑ,z = δi. Assumption C readily implies that
consumptions lie in the proper regions of the utility function.

The equilibrium always exists in zero volume.

Positive supply economy. We assume that VB, VX > 0. Security prices are:

P (z) = βEz

[(
α1(z)+(1− α1(z)) 1

λ1u
′(δ1 + b1(z) + VX

η1(z)(P (z′) + y(z′)))
)

(P (z′) + y(z′))
]
, (41)

Q(z) = βEz[α2(z) + (1− α2(z)) 1
λ2u

′(δ2 + b2(z))], (42)

where the quantities b1 and b2 are determined by three cases (see definition (32) of ψx):

• b1(z) = 0 and b2(z) = VB
η2(z) if Ez[α2(z) + (1 − α2(z)) 1

λ2u
′(δ2 + VB

η2(z))] ≥ Ez[α1(z) +
(1− α1(z)) 1

λ1u
′(δ1 + VX

η1(z)(P (z′) + y(z′)))]: complete market segmentation;

• b1(z) = VB
η1(z) and b2(z) = 0 if Ez[α2(z) + (1 − α2(z)) 1

λ2u
′(δ2)] ≤ Ez[α1(z) + (1 −
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α1(z)) 1
λ1u

′(δ1 + VX
η1(z)(P (z′) + y(z′)) + VB

η1(z))]: also complete market segmentation;

• b1(z) = VB−η2b2(z)
η1(z) and b2(z) solves Ez[α2(z)+(1−α2(z)) 1

λ2u
′(δ2+b2(z))] = Ez[α1(z)+

(1− α1(z)) 1
λ1u

′(δ1 + VX
η1(z)(P (z′) + y(z′)) + VB−η2(z)b2(z)

η1(z) )]: both types trade bonds.

Since prices and bond quantities depend on VX and VB (in addition to other model
parameters), equilibrium existence conditions can be expressed as Θ(VX , VB) > 0, where:

Θ(VX , VB) =



P (z) 1
λ1u

′(δ1 + b1(ẑ) + VX
η1(ẑ)(P (z) + y(z))) . . .

. . .− βEz
[
(1− ρ1(z, z′) + ρ1(z, z′) 1

λ1u
′(δ1))(P (z′) + y(z′))

]
Q(z) 1

λ1u
′(δ1 + b1(ẑ) + VX

η1(ẑ)(P (z) + y(z))) . . .
. . .− β(1− Ez [ρ1(z, z′)] + Ez [ρ1(z, z′)] 1

λ1u
′(δ1))

Q(z) 1
λ2u

′(δ2 + b2(ẑ)) . . .
. . .− β(1− Ez [ρ2(z, z′)] + Ez [ρ2(z, z′)] 1

λ2u
′(δ2))


(ẑ,z)∈Z2

> 0.

(43)

Since the set Z is of cardinal n, Θ(VX , VB) ∈ R3n2 . Note that Θ(VX , VB) > 0 means that
every component of Θ(VX , VB) is strictly positive. Let:

VΛ =
{

(VX , VB) ∈ (R+)2|Θ(VX , VB) > 0
}
. (44)

The zero supply part implies that VΛ is not empty and, by continuity, includes an open set
(of (R+)2 endowed with the Euclidean norm) containing (0, 0). In other words, there exist
V

Λ
X > 0 and V Λ

B > 0, such that for all 0 ≤ VX ≤ V
Λ
X and 0 ≤ VB ≤ V

Λ
B, (VX , VB) ∈ VΛ.

We now turn to the consumption expression. The consumption levels of the different
classes (i = 1, 2) can be expressed as follows

ci,ppẑ,z = ωi(z)(1− τ(z))+
(
P (z)( VX

η1(ẑ)−
VX
η1(z))+y(z) VX

η1(ẑ)−χ
1
)

1i=1 (45)

+bi(ẑ)−Q(z)bi(z),

ci,upẑ,z = ωi(z)(1− τ(z))−
(
P (z) VX

η1(z) + χ1
)

1i=1 −Q(z)bi(z), (46)

ci,puẑ,z = δi + (P (z) + y(z)) VX
η1(ẑ) 1i=1 + bi(ẑ), (47)

ci,uuẑ,z = δi. (48)

where taxes are given by τ(z) = (1−Q(z))VB
ω1(z)η1(z)+ω2(z)η2(z) . The vector of consumptions is denoted

C(VX , VB) = [c1,pp
ẑ,z , c

1,up
ẑ,z , c

2,pp
ẑ,z , c

2,up
ẑ,z , c

1,pu
ẑ,z , c

1,uu
ẑ,z , c

2,pu
ẑ,z , c

2,uu
ẑ,z ](ẑ,z)∈Z2 and depends on VB and
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VX . The space of admissible consumptions is Γ = ([c∗4, c∗5]2 × [c∗2, c∗3]2 × [0, c∗1]4)n
2
. Let

VΓ =
{

(VX , VB) ∈ (R+)2|C(VX , VB) ∈ Γ
}
. (49)

As for VT and VΛ, we know, from the zero supply part, that VΓ is not empty and by
continuity that an open set containing (0, 0) is included in VΛ.

Finally, let define the set V1 (which is non-empty and includes an open set with (0, 0))
of volumes for which the equilibrium, where only type-1 agents trade stocks, exists:

V1 = VT ∩ VΛ ∩ VΓ. (50)

C Proof of Proposition 2
Since dividends are IID, stock prices are constant. Provided that condition (10) holds,
the Euler equation for the stock implies:

PZV =
β(α1 + (1− α1)u

′(δ1)
λ1 )

1− β(α1 + (1− α1)u′(δ1)
λ1 )

E z̃[y(z̃)], (51)

where E z̃[·] is the expectation with respect to z̃. Type-2 agents are trading riskless bonds,
while the bond price is too expensive for type-1 agents, i.e.:

QZV = β

(
α2 + (1− α2)u

′(δ2)
λ2

)
, (52)

QZV > β

(
α1 + (1− α1)u

′(δ1)
λ1

)
, (53)

where condition (53) holds thanks to condition (11). The zero supply economy therefore
features full market segmentation, where type-1 agents hold stocks, while type-2 agents
hold bonds. This equilibrium always exists from Proposition 1.

From price expressions (51) and (52), we deduce the equity premium of equation (18).

38



D Proof of Proposition 3
Because the dividend process is IID, stock and bond prices, as well as bond holdings, are
constant. The Euler equations for both securities become:

P PV = βE z̃

α1 + (1− α1)
u′(δ1 + (Pt+1 + yt+1)VX

η1 + b1)
λ1

 (P PV + y(z̃))
 ,

QPV = β(α2 + (1− α2)u
′(δ2 + b2)
λ2 ).

We solve for the price expression in the neighborhood of zero volumes. We assume that
0 < VX � 1 and 0 < VB � 1. Since bonds cannot be short-sold, we also have 0 ≤ bi � 1.
We obtain P PV ≈ PZV + πxVX + πbb

1,27 where PZV defined in equation (51) is the stock
price in zero volume and where:

πx(1− βψ1) = β(1− α1)u
′′(δ1)
λ1 E z̃

[
(PZV + y(z̃))2

]
, (54)

πb(1− βψ1) = β(1− α1)u
′′(δ1)
λ1 E z̃

[
PZV + y(z̃)

]
, (55)

with: ψi = αi + (1− αi) 1
λi
u′(δi), i = 1, 2. (56)

For the bond, we obtain QPV ≈ QZV +β(1−α2)u
′′(δ2)
λ2 b2 for type-2 agents, where QZV

defined in equation (52) is the bond price in zero volume. From these equations, one gets
equation (19).

For type-1 agents, we have QPV & βψ1 + β(1 − α1)u
′′(δ1)
λ1 (b1 + E z̃[PZV + y(z̃)]). If

type-1 agents do not participate to the bond market, the previous inequality is strict and
we have b1 = 0 and b2 = VB

η2 . If type-1 agents trade bonds, the previous inequality is an
equality and noticing that b1 = VB

η1 − η2

η1 b
2, we deduce the bond expressions (20) and (21).

Because of condition (11), type-2 agents cannot be credit-constrained. Otherwise, we
would have (1− α1)u

′′(δ1)
λ1 (VB

η1 + VX
η1 E

z̃[PZV + y(z̃)]) > ψ2 − ψ1 > 0, contradicting positive
volumes. We derive then from bond and stock prices the equity premium in (18).

27The approximation sign ≈ refers to a first order development with respect to security volumes. It
should be understood as . . . = . . .+ o(VX , VB). We assume that both volumes have the same
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E Proof of Proposition 4
From Proposition 1, we deduce that two subsets Ii ⊂ {1, . . . , n} (i = 1, 2) charac-
terize the states in which only type-i agents trade bonds, such that the 4n variables
(b1
k, b

2
k, Pk, Qk)k=1,...,n characterizing the equilibrium are given by the 4n equations (22)–(27).

For the equilibrium to exist, we need to check two sets of conditions: (i) productive
agents of a given type are excluded from bond markets; (ii) since unproductive agents of
both types are permanently excluded from both financial markets.

In the states of the world I2 where only type-2 agents trade bonds, type-1 agents are
excluded due to too high bond prices and the following inequality has to hold:

Qk > β
n∑
j=1

πkj(α1
kλ

1 + (1− α1
k)

1
λ1u

′(δ1 + (Pj + yj)
VX
η1 )), for k ∈ I2. (57)

By the same token, for states of the world I1, where only type-1 agents trade bonds:

Qk > β(α2
kλ

2 + (1− α2
k)

1
λ2u

′(δ2)), k ∈ I1. (58)

Type-1 (unproductive) agents are excluded from both stock and bond markets. The
two following inequalities therefore need to hold for all k, h = 1, . . . , n:

Pk
1
λ1u

′(δ1 + b1
h + VX

η1
h

(Pk + yk)) > β
n∑
j=1

πkj(1− ρ1
kj + ρ1

kj

1
λ1u

′(δ1))(Pj + yj), (59)

Qk
1
λ1u

′(δ1 + b1
h + VX

η1
h

(Pk + yk)) > β
n∑
j=1

πkj(1− ρ1
kj + ρ1

kj

1
λ1u

′(δ1)). (60)

Unproductive type-2 agents cannot participate to stock markets. For them to be
excluded from bond markets, the following inequality needs to hold for all k, h = 1, . . . , n:

Qk
1
λ2u

′(δ2 + b2
h + VX

η2
h

(Pk + yk)) > β
n∑
j=1

πkj(1− ρ2
kj + ρ2

kj

1
λ2u

′(δ2)). (61)

F Data Appendix
We consider the dataset used by Heathcote, Perri and Violante (2010). To measure the
consumption of non-durable and services, we use the sum of expenditures on non-durable
goods, including: the vehicle services and other vehicle expenses (insurance, maintenance,
etc.), the housing services, the rent paid, other lodging expenses, household equipment
and entertainment. These items are deflated using the CPI. This measure corresponds to
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the variable ndpnd0 in Heathcote et al. (2010). We use the weights given in the CEX to
define in each quarter the bottom 50% and the top 50% of households in the consumption
distribution.

To compute the volatility of consumption growth for a given group in each quarter,
we use the variance of the consumption growth rate between quarter t and quarter t+ 1
among all households belonging to said group at date t (regardless the household’s group
in t+ 1). We then compute the average variance per group over the time period.

G Description of the calibration algorithm
We describe here the algorithm of Section 4 that we use to minimize the distance between
the 6 moments generated by the model and their empirical counterparts and that allows
us to calibrate our model through the simulated method of moments. We denote χv =
[α1, α2, ω2, δ1, δ2, ω1

G] ∈ R6
+ the vector of model parameters we have to compute. We start

from an initial guess vector χ0
v.

1. We compute the six moments T̃ 0 generated by the model when parameters are equal
to χ0

v. We compute the score S0 = (T̃ 0−T )Ω(T̃ 0−T )′, where Ω = I6×6 is the weight
matrix and T is the vector of empirical moments we match.

2. We construct the hyper-cube of the 26 = 64 neighbors of χ0
v by considering marginal

increase or decrease in each parameter: χiv = [χv,1 ± ε, . . . , χv,6 ± ε] (i = 1, . . . , 64)
where we set ε = 10−3.

3. For every vector χiv, we compute the moments generated by the model T̃ i (i =
1, . . . , 64). We then also compute the related score Si = (T̃ i − T )Ω(T̃ i − T )′ for
i = 1, . . . , 64.

4. If S0 ≤ Si for all i = 1, . . . , 64, we stop the algorithm and we have just found a
minimum. We then set our model parameters equal to χ0

v. If not, we start the
algorithm in step 1 with the new initial value χ0

v = χimin
v , where imin = arg mini Si.

This algorithm generates a path in R6
+ converging towards a (local) minimum. We try

different starting points χ0
v to find a global minimum.

H The model without participation costs
Following the same steps as in the paper, we deduce the structure of the model with-
out participation costs. At the equilibrium, both agents types may trade or not bonds
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and stocks. In particular, stock holdings x1
k and x2

k in state k are determined by Euler
equations. There exist sets IBi , IXi ⊂ {1, . . . , n} (i = 1, 2), such that the 6 × n vari-
ables (b1

k, b
2
k, x

1
k, x

2
k, Pk, Qk)k=1,...,n defining the equilibrium are given by the following 6×n

equations (i = 1, 2):

Pk = β
n∑
j=1

πkj(αik + (1− αik)
1
λi
u′(δi + (Pj + yj)xik + bik))(Pj + yj), k ∈ {1, . . . , n} − IXi ,

(62)

Qk = β
n∑
j=1

πkj(αik + (1− αik)
1
λi
u′(δi + (Pj + yj)xik + bik)), k ∈ {1, . . . , n} − IBi , (63)

VX = ηik x
i
k and 0 = xjk, k ∈ IXi , i 6= j = 1, 2, (64)

VX = η1
k x

1
k + η2

k x
2
k, k ∈ {1, . . . , n} − IX1 − IX2 , (65)

VB = ηik b
i
k and 0 = bjk, k ∈ IBi , i 6= j = 1, 2, (66)

VB = η1
k b

1
k + η2

k b
2
k, k ∈ {1, . . . , n} − IB1 − IB2 . (67)

The set IXi i = 1, 2 gathers states of the world, in which type-i agents do not trade stocks.
The set IBi has the same meaning for bond market. The sets IB1 , IB2 on one side and IX1 ,
IX2 on the other side must be disjoint. This means that there should not exist a state
of the world, in which no one is trading bond or stocks. Note that since our equilibrium
features security prices that only depend on the current state of the world, the sets IBi , IXi
are not time-dependent.

As in the core of the paper, several inequalities have to hold for the above equations to
define a small-trade equilibrium. These inequalities guarantee that: (i) productive agents
who do not trade a given security do not want to do so (i.e., this implies inequalities
similar to (57)–(58)), and (ii) that unemployed agents do not want to trade (i.e., this
implies inequalities similar to (59)–(61)). For the sake of conciseness, we do not report
here these inequalities, which are rather straightforward to deduce from the previous
equilibrium but rather lengthy to write down.
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