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the Kim (1994) filter on CBOE OVX volatility data. The model characterizes two

states: a normal state with low volatility and negative variance premium and a
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1 Introduction

Under normal circumstances, equity investors achieve a higher return on their capital

than bondholders. In the classic Black and Scholes (1973) and Merton (1973) equity

model, the actual P-drift µ is higher than the risk-neutral Q-drift r. Investors taking on

risk expect to be rewarded. The equity risk-premium is positive. However, from time to

time, there is a crisis, and the actual performance of shares falls below that of bonds.

The situation is reversed when it comes to realized P-variances of share indices such

as the S&P 500 and implied Q-variances calculated from volatility indices such as the

VIX. Under normal circumstances, the P-variances are lower than the Q-variances. The

variance risk-premium is negative. One of the explanations for this phenomenon is that

option sellers hedge the options they have sold, and during the hedging they are affected

by the realized variance in the market. Clearly these option sellers expect to be rewarded,

and they try to sell the options at a sufficiently high price, which in turn corresponds

directly to the implied volatility. Again, however, a crisis occurs from time to time, and

the situation turns around. For example, in October 2008, at the height of the financial

crisis, the realized 21-day SPX variance reached a high of 0.6939, while the corresponding

high of the squared VIX was lower at 0.6410. In March 2020, at the first shock of the

Covid 19 crisis, the realized SPX variance reached 0.9064 and the squared VIX only

0.6838. Traders of variance swaps are familiar with this behaviour: usually, paying the

P-variance and receiving the Q-variance is a profitable trade. However, in crisis periods,

the trade can lead to significant losses. Here is how Alexander Langnau describes this

trade (private communication):

The presence of the volatility skew has as a consequence that the implied

variance, which is deduced from options over a wide range of strikes, typically

trades at a premium against the average variance. This behaviour motivated

the creation of custom-tailored financial products where an investor would

receive implied volatility on a monthly basis while paying realized volatility

over the same period. Because of its excellent performance over back-testing

periods, this product gained great popularity and traded in large size in the fi-

nancial markets. It was only when the financial crisis hit in 2007 and investors

lost up to 100% of their capital that the product showed its true down-side

risk behaviour.
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In this article, we focus on the variance risk premium (VRP) in crude oil markets. The

introduction of the OVX, the crude oil volatility index, in 2007 has made such an endeavor

much easier. In earlier studies in energy markets, such as Doran and Ronn (2008) and

Trolle and Schwartz (2010), considerable effort was required to replicate such an index

via liquid option quotes. Our starting point was the remark one often hears 1 that

variance risk premia are notoriously difficult to estimate from financial time series. In

most commodity models, the variance risk premium is represented by a single parameter.

What if this parameter, instead of being constant over time, can undergo regime changes?

And can these regime changes be detected by comparing time series of realized and implied

variances?

Motivated by these questions, we allow the variance risk premium to switch between

two states that are governed by an independent Markov chain. Intuitively, the first state

corresponds to a “normal” regime with a negative VRP, and the second state to a “crisis”

regime with a positive VRP. Of course, we do not a priori enforce these conditions, but

let the data and estimation procedure lead us to our results.

At this point, we need to talk about the “historic” crisis of April 2020 that led to a

negative WTI futures price for the first time in its history. On Monday, 20 April 2020,

the then nearby May “K” contract closed at USD −37.63. (The following June “M”

contract still closed with a positive price, as did the rest of the futures curve from there.)

The previous closing price of the May contract, on Friday 17 April 2020, had been USD

18.27, implying a return of −306%. This crisis was so material that, when we include it

in our estimation, it drastically changes the results. However, we believe that it would be

premature to attach too much weight to this period. So far, it still remains a “unique”

event, and it is difficult and unreliable to fit models to such singletons. In the same

period, for example, the other crude oil benchmark, Brent, showed a more-or-less normal

behaviour.

Therefore, we have decided to limit our study to OVX and realized-return data of

CLc1 to the period from May 2007 to the beginning of March 2020. However, it is

important to note that the events in April 2020 are completely in line with our narrative:

The OVX peaked on 21 April 2020 at 325.15 points, or 3.2515 in absolute terms. Again,

this was a historic high. But the realized volatility calculated for 21-day periods including

1for example by Eduardo Schwartz at the Commodity and Energy Markets Association (CEMA)
Annual Meeting in Rome in June 2018
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20 April 2020 lies above 11.6. And in terms of the variance: the corresponding squared

OVX is 10.5723, in contrast with a realized variance above 130.

A Markov chain with M states has M2 −M transition probabilities that need to be

specified or determined. It follows that increasing M leads to a large increase in the

number of model parameters. Still, it could be interesting to add a third “really serious,

historic” crisis or “pandemic” regime to our model and study the results. Currently,

however, we believe that the data are too sparse to include such a third regime, and we

also sincerely hope that things stay this way.

General introductions to the commodity finance literature are given in Clark (2014),

Roncoroni et al. (2015), and Fanelli (2019). Doran and Ronn (2008) study the market

price of volatility risk in energy markets using data from 1994 to 2004. Trolle and Schwartz

(2009) study unspanned volatility in a stochastic volatility context, but don’t focus on

risk premia in particular. Trolle and Schwartz (2010) analyze variance risk premia in

crude oil and natural gas markets using data from 1996 to 2006. Their approach is

entirely model-free, in contrast to Doran and Ronn (2008) and our approach. Hamilton

and Wu (2012) also study risk premia in crude oil markets, but focus on the futures price

premium and not on the variance risk premium. Schneider and Tavin (2018) give the

general multi-factor specification of the stochastic volatility model used here, and focus

part of their attention on calibrating their model to volatility surfaces for crude oil futures

and calendar spread options. Schneider and Tavin (2021) generalize the model to include

seasonal volatility, give the state-space representation, and study time series of various

agricultural commodities.

Regarding the filtering techniques we use in this article, our approach follow the

contributions of Hamilton (1989), Lam (1990), and Kim (1994).

The remainder of this article is structured as follows. Section 2 presents our data

and motivating evidence. Section 3 introduces the stochastic volatility model with a

regime-switching variance-risk parameter. In Section 4, we present our empirical results.

In particular, we compare the performance of the static 1-state model to the regime-

switching 2-state model. We also examine the probabilities we obtain for being in the

“crisis” state at certain times and investigate whether they correspond to real-world

events. Furthermore, we examine whether the performance of a Capital Asset Pricing

Model (CAPM) can be improved by including information about the current regime.

Section 6 concludes the article.

4



2 Data and motivating evidence

In this section, we present the set of data we are using, as well as some motivating

evidence for the model we develop. Our analysis uses two main sources of data related

to the oil market: the Crude Oil Volatility Index (OVX), and the NYMEX WTI Crude

Oil futures prices.

The OVX is a volatility index for crude oil markets. This index is similar to the

well-known Volatility Index (VIX) for the S&P500 stock index. According to the CBOE,

“the Cboe Crude Oil ETF Volatility Index measures the market’s expectation of 30-day

volatility of crude oil prices by applying the VIX methodology to United States Oil Fund,

LP (Ticker - USO) options spanning a wide range of strike prices.” We take this index

as a measure of implied volatility and its square as a measure of implied variance.

Figure 1: The OVX from 10 May 2007 to 31 January 2020.

Even though the OVX has been published since 15 July 2008, daily OVX data are

available going further back to 10 May 2007 from the CBOE, we choose this earlier date

as the natural starting point of our empirical analysis. Figure 1 plots the evolution of

OVX from 10 May 2007 to 31 January 2020. 2 Our whole analysis in the remainder of

this paper will be based on this time window. The OVX (resp. OVX2) peaked at 100.42%

2The OVX is expressed in points, where 100 corresponds to an implied volatility level of 100%, but
for mathematical convenience, we will consider it as expressed in percentage points, where 1 corresponds
to an implied volatility level of 100%.
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(100.84%) on 11 December 2008, and reached its lowest point of 14.50% (2.10%) on 6

June 2014. We report in Table 1 some basic descriptive statistics regarding OVX.

OVX OVX2

Mean 36.02% 14.70%

Standard Error 13.13% 12.47%

Minimum
14.50% 2.10%

(on 6 June 2014)

Q25 27.72% 7.68%

Median 33.19% 11.02%

Q75 41.97% 17.61%

Maximum
100.42 100.84%

(on 11 December 2008)

Table 1: Descriptive statistics on OVX and OVX2 (between 10 May 2007 and 31 January
2020).

Regarding futures prices, we consider the NYMEX WTI Crude Oil futures data

(henceforth, CL) from Thomson Reuters. The data consist of the running futures se-

ries of 24 futures contracts. For instance, CLc1 denotes the futures contract that arrives

to maturity within the next month. This is the earliest available maturity. Oppositely,

CLc24 is the futures contract with the latest available maturity, that lies between 23 and

24 months from the date under consideration. These series are constructed by concate-

nating the first futures price with the new first futures price after the roll date, and so

on. In contrast to other commodity markets, such as agriculturals or electricity, there is

no seasonality in crude oil markets. We plot in Figure 2 the time evolution of CLc1 and

CLc24 from 10 May 2007 to 2 March 2020. As can be seen, both price time-series are

highly correlated – the correlation coefficient amounting to 93.04%. The shorter contract

CLc1 is however more volatile than the longer one CLc24, which is a manifestation of the

Samuelson volatility effect (see Schneider and Tavin, 2018, for instance). This effect is

the empirical observation from most commodity markets that a given contract increases

in volatility as it approaches its maturity date.

Table 2 gathers some basic statistics regarding CLc1 and CLc24. In particular, the

Samuelson effect is visible in the standard error of the CLc24 that is lower than the one
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Figure 2: The CLc1 and CLc24 from 10 May 2007 and 31 January 2020.

of CLc1.

CLc1 CLc24

Mean 74.07 74.59

Standard Error 22.99 19.59

Minimum
26.21 38.66

(on 11 Feb 2016) (on 20 Jan 2016)

Q25 53.27 55.06

Median 72.47 77.54

Q75 93.82 88.81

Maximum
145.29 144.26

(on 3 Jul 2008) (on 14 Jul 2008)

Table 2: Descriptive statistics on CLc1, and CLc24 (values in USD), from 10 May 2007
to 31 January 2020.

As we wish to compare the implied variance from the OVX with the realized variance

of the CLc1 futures contract, we need to calculate 30-day realized variances. We denote

by F (t, T1) the price at date t of the futures contract CLc1 maturing at date T1. We

consider a time period of N business days corresponding to the set of trading dates

t0 < t1 < . . . < tN , with ∆t = ti − ti−1 = 1/252. In our computations, we will solely
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focus on N = 21 trading days. The realized variance of the futures contract over these

N dates will be denoted by RVCLc1
t0,tN

for the sake of simplicity, as N remains unchanged in

the remainder of the paper. This realized variance can be computed as follows:

RVCLc1
t0,tN

=
1

4t
1

N − 1

N∑
i=1

(
ln

F (ti, T1)

F (ti−1, T1)
− µt0,tN

)2

,

where µt0,tN is the N -day sample mean (similarly denoted without N) computed as:

µt0,tN =
1

N

N∑
i=1

ln
F (ti, T1)

F (ti−1, T1)
.

Note that the quantities RVCLc1
t0,tN

and µt0,tN are only known at date tN , which explains

why we use two time subscripts for these quantities. The realized volatility can simply

be computed as the square root of the realized variance. We report in Table 3 descriptive

statistics regarding the one-month realized variance of the futures contact CLc1 and the

implied variance, OVX2.

We will report two versions for the realized variance. In the first one, we will report

the realized variance that covers the same time span as the implied variance of the same

date. More precisely, since at a given date t, we will report the implied variance OVX2
t

that spans the time period from date t to date t + 20, the associated realized variance

will be the one that covers the same time interval, which is RVCLc1
t,t+20. The second version

of the realized variance will be based on the information available at a given date. At

any date t, the known implied variance is still OVX2
t , while the known realized variance

is RVCLc1
t−20,t. This explains the small difference in the column OVX2 compared to Table 1,

as well as the fact that the sample goes from 10 May 2007 to 31 January 2020 (which is

exactly 21 days before 2 March 2020).

We plot in Figure 3 the OVX2 together with the two CLc1 realized variance time

series. For clarity purposes, we split the figures into two panels. The top panel corre-

sponds to RVCLc1
t,t+20, where the realized variance spans the same time period as the implied

variance OVX2
t , while the bottom panel reports RVCLc1

t−20,t, which is known at the same

time as the implied variance OVX2
t . Obviously, both panels display similar graphs, even

though the spikes in the RVCLc1
t−20,t graph seem to be more aligned than in the OVX2

t .

This better coincidence is also visible in the larger correlation with realized variance of
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Implied variance
(OVX2

t )
Realized variance

(RVCLc1
t,t+20)

Realized variance
(RVCLc1

t−20,t)

Mean 14.70% 13.64% 13.64%

Standard
Error

12.47% 18.28% 18.28%

Minimum
2.10% 0.96% 0.96%

(on 6 Jun 2014) (on 3rd Jan 2013) (on 1st Feb 2013)

Q25 7.68% 4.70% 4.70%

Median 11.02% 7.68% 7.68%

Q75 17.61% 14.40% 14.40%

Maximum
100.84% 151.50% 151.50%

(on 11 Dec 2008) (on 8 Dec 2008) (on 7 Jan 2009)

Correlation
with OVX2

t

100.0% 83.0% 86.4%

Table 3: Realized vs Implied variance, from 10 May 2007 to 31 January 2020.

RVCLc1
t−20,t compared to RVCLc1

t,t+20. This shows that realized variance somehow drives implied

variance.

We have reported variances rather than volatilities in Table 3 and Figure 3, even

though considering the latter would have produced very similar outcomes. The reason

we opted for variances is that traded derivatives, such as variance swaps for instance, are

based on variances rather than volatilities. Following the literature (see Carr and Wu,

2009 and Trolle and Schwartz, 2010 among others), we define the variance risk premium

as the difference between the realized variance at date t and the implied variance 21 days

before:

VRPt,t+20 = RVCLc1
t,t+20 −OVX2

t . (1)

The variance risk premium can be seen as the payoff of a swap contract in which the

buyer of the contract pays the fixed leg OVX2
t and receives the floating leg, equal to

RVCLc1
t,t+20, 21 days later. As such the variance risk premium is only known at date t+ 20.

Similarly, the variance risk premium in log return terms is defined as follows:

VRPLt,t+20 = ln(RVCLc1
t,t+20/OVX2

t ). (2)
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Figure 3: OVX2 and CLc1 realized variance, from 10 May 2007 to 31 January 2020.

Because of these trading contracts, the focus of the present paper will be mostly on the

implied variance series (OVX2
t )t. We will denote it as OVX2 and there should not be any

ambiguity on the fact that we refer to the lagged time-series that is consistent with the

variance risk premium, and not to time-series that is consistent with the time-t available

information.

As can be observed in the top panel of Figure 3, the OVX2 series lies above the CLc1

series most of the time. This is reflected in a variance risk premium (VRP, henceforth)

that is negative most of of the time and on average. However, the sample also features

periods, in which the CLc1 surpasses the OVX2, implying a positive VRP. These periods

seem to correspond to periods with very high realized volatilities. So as to better contrast

the episodes of positive and negative variance risk premium, we report several conditional

statistics in Table 5. The first column, labeled “Unconditional”, reports unconditional

means and unconditional standard errors for the whole sample. The second column,

labeled “Positive VRP” reports means and standard errors conditional on episodes of

positive VRP. For instance, the “positive VRP” conditional mean of a generic variable x

is defined as:

xVRP>0 =

∑T
t=0 xt1VRPt−20,t>0∑T
t=0 1VRPt−20,t>0

, (3)

where T is the size of our sample and 1VRPt−20,t>0 an indicator function equal to 1 if

VRPt−20,t > 0 and 0 otherwise. The standard error is defined in a very similar way.
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Finally, the last column in Table 5, labeled “Negative VRP”, reports means and standard

errors conditional on the VRP being negative. The formal definition parallels the one of

equation (3).

Unconditional Positive VRP Negative VRP

Number of
observations

3185 842 2343

VRPt−20,t (%) −1.04
(10.58)

9.93
(14.60)

−4.98
(4.10)

Realized
variance

RVCLc1
t,t+20 (%)

13.68
(18.33)

21.31
(25.18)

10.94
(14.17)

Realized
variance

RVCLc1
t−20,t (%)

13.68
(18.33)

28.42
(28.55)

8.38
(7.61)

OVX2 (%)
(OVX2

t )
14.75
(12.49)

22.55
(18.16)

11.94
(8.00)

CLc1 price
F (t, T1) (USD)

74.13
(23.04)

67.76
(23.77)

76.41
(22.34)

1-day CLc1
log-return (%)

−0.01
(2.38)

−0.01
(3.46)

−0.01
(1.85)

21-day CLc2
log-return (%)

−0.86
(10.02)

−5.02
(12.55)

0.63
(8.47)

Table 4: Conditional statistics regarding episodes of positive and negative VRP.

Table 5 makes it clear that the behavior of time-series is very different during episodes

of positive VRP compared to episodes of negative VRP, while unconditional means tend to

minimize the contrast between the two. The differences among the two episodes obviously

concern the VRP, but also realized variance, OVX2, and to a lesser extent CLc1 prices and

returns. In short, positive VRP episodes feature high realized variance (and hence high

volatility), high values of the OVX2, but low prices. One-day returns are not significantly

affected, while 21-day returns are negative when VRP is positive. Oppositely, negative

VRP episodes are characterized by low (or moderate) realized variance, low values of the

OVX2, and moderate or high prices, as well as (barely) positive 21-day returns. We can

also observe that the overall volatility (reflected in the standard of the different quantities
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reported Table 5) tends to be higher in periods of positive VRP than in period of negative

ones.

These elements let us think that episodes of positive or negative VRP are of different

nature and correspond to different regimes in the oil market. This is consistent with the

anecdotal evidence of Figure 3. The positive VRP episodes correspond to well-known

episodes: the 2008 crisis, the 2011 European economic crisis, the European debt crisis

in 2012, the conjunction of Middle-East (especially in Libya) and Ukraine problems in

2015, the 11-year low of the WTI price implying production uncertainties in 2016. This

means that positive VRP episodes can be connected to particular events of the last 15

years – that we will call crisis. This denomination of crisis is obviously a simplification

since it covers episodes of very different magnitudes, some of them having a strong and

international span that affects a vast majority financial markets (e.g., 2008 crisis), some

of them being more local (European crisis) or more specific to the oil market (11-year

low of the WTI price).

3 A Regime-Switching Stochastic Volatility Model

for Crude Oil Futures

3.1 Our modeling choices

We now explain how the empirical evidence of Section 2 has led us shape our model and

in particular to opt for a regime-switching model. Before turning to the technical details,

we will walk through the main steps of the model in a non-technical way. Our model

can be seen as being made of three distinct layers. The first layer builds on the Clewlow

and Strickland (1999) model, which is one of the seminal models for the valuation of

commodity derivatives. The model is futures-based. It assumes that, under the risk-

neutral probability, the instantaneous return of the futures follows a uni-dimensional

normal distribution. The expectation of this distribution is null because futures contracts

do not require any initial investment. The volatility is a negative exponential function

that guarantees the spot price to be Markovian. From an empirical perspective, this

allows the model to incorporate the Samuelson (1965) volatility effect. The second layer

involves introducing stochastic volatility à la Heston (1993). The combination of these
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two ingredients yields the model given in Schneider and Tavin (2018). The third layer

concerns the risk premium, and hence the change of measure from the risk-neutral to the

physical probability. Instead of considering a constant market price of risk, we assume

that the price of risk is regime-switching. The objective of this choice is to account for

the episodes of negative and positive VRP that we discussed in Section 2. However, it

remains a quantitative question whether the price of risk will actually be estimated with

different signs.

One of the strengths of our model is its relatively good tractability. Introducing

regime-switching in stochastic models in general leads to tractability issues. For instance,

Elliott et al. (2005) explain that, because of market-incompleteness, the martingale mea-

sure is not unique and they opt for the so-called minimal entropy martingale measure.

Papanicolaou and Sircar (2014) make their VIX options pricing model tractable by consid-

ering a Taylor development of the model around small rates of regime switches. However,

our model preserves tractability, as the specification under the risk-neutral measure Q is

unchanged, while still allowing for regime-switches that only affect the model dynamics

under the physical measure P. Our model therefore enables us to combine tractability

with regime-switching that can be estimated using the Kim (1994) filter, which is an

adaptation of the Kalman filter to regime-switching models.

The rest of the section is organized as follows: In Section 3.2, we present the model,

while in Section 3.3, we provide the model’s state-space representation that allows us to

estimate it using the Kim filter.

3.2 The model

Under the risk-neutral probability measure Q. We begin by giving a mathemati-

cal description of our model under the risk-neutral measure Q. Let BQ
1 , B

Q
2 be Brownian

motions under Q. Let Tm be the maturity of a given futures contract CLcm. The futures

price F (t, Tm) at time t, 0 ≤ t ≤ Tm, is assumed to follow the stochastic differential

equation (SDE)

dF (t, Tm) = F (t, Tm)e−λ(Tm−t)
√
vtdB

Q
1,t (4)

and the variance process (vt) to follow the SDE

dvt = κ (θ − vt) dt+ σ
√
vtdB

Q
2,t. (5)
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The correlation is given by 〈dBQ
1,t, dB

Q
2,t〉 = ρdt.

It is well-known that vT follows a noncentral chi-squared distribution (see Cox et al.

(1985)). At current time t = 0 and for a given time-horizon T , the density of vT can be

written in terms of the modified Bessel function of the first kind Iq as

g(vT ;T, v0) = ce−u−w
(w
u

)q/2
Iq(2
√
uw), (6)

where v0 is the initial variance value and

c :=
2κ

σ2(1− e−κT )
, u := cv0e

−κT , w := cvT , q :=
2κθ

σ2
− 1.

European call and put options on futures contracts can be priced using the Fourier

inversion technique as described in Heston (1993) and Bakshi and Madan (2000). The

characteristic function of the model is given in Schneider and Tavin (2018). There it is

also shown that the model performs well when calibrated to futures and option prices,

since it can perfectly match any given futures curve and provide a good fit for the option

implied volatility strike- and term-structure, and that it outperforms both the 1-factor

Clewlow and Strickland (1999) model and the Heston (1993) model.

Under the physical probability measure P. To specify the model under the physical

probability measure P, we follow the “completely affine” specification of Casassus and

Collin-Dufresne (2005) (see also Doran and Ronn (2008), Trolle and Schwartz (2009),

and Chiarella et al. (2013)). We use the relations

dBP
1,t = dBQ

1,t − πF
√
vtdt, (7)

dBP
2,t = dBQ

2,t − πv
√
vtdt, (8)

where the parameter πF gives the market price of futures risk, and the parameter πv the

market price of variance risk.

It ensues that for fixed Tm, the futures price F (t, Tm) under P follows the SDE

dF (t, Tm) = F (t, Tm)e−λ(Tm−t)
√
vtdB

Q
1,t

= F (t, Tm)
(
πF e−λ(Tm−t)vtdt+ e−λ(Tm−t)

√
vtdB

P
1,t

)
, (9)
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and the variance process v follows the SDE

dvt = κ (θ − vt) dt+ σ
√
vtdB

Q
2,t,

= (κ (θ − vt) + σπvvt) dt+ σ
√
vtdB

P
2,t. (10)

Introducing new parameters

κ̃ := κ− σπv, θ̃ :=
κθ

κ− σπv
=
κ

κ̃
θ, (11)

this process can be written in the familiar form as

dvt = κ̃
(
θ̃ − vt

)
dt+ σ

√
vtdB

P
2,t.

The futures premium πF introduces a drift term into the SDE (9) for the futures

returns, which is proportional to πF and damped by the exponential factor. It has no

effect on the volatility. If πF > 0, futures prices will have a tendency to rise, and if

πF < 0, futures prices will have a tendency to fall.

The variance premium πv only affects the drift term of the SDE (10) for the variance.

If πv > 0, the mean-reversion rate κ̃ will be reduced and the mean-reversion level θ̃ will

be increased, and if πv < 0, κ̃ will be increased and θ̃ will be reduced.

3.3 Model estimation using the Kim filter

The state-space representation of the model. A general Gaussian linear state-

space model with regime-switching is given by a transition equation

st = dSt
t + T St

t st−1 +RSt
t η

St
t , (12)

and a measurement equation

yt = cSt
t +ZSt

t st + eSt
t , (13)

for time t ∈ {1, . . . , T}, with state st ∈ Rq×1, dSt
t ∈ Rq×1, T St

t ∈ Rq×q, RSt
t ∈ Rq×r,

ηSt
t ∼ Nr(0,QSt

t ), QSt
t ∈ Rr×r denoting the system vectors and matrices of the transition

equation, and measurement yt ∈ Rp×1, cSt
t ∈ Rp×1, ZSt

t ∈ Rp×q, eSt
t ∼ Np

(
0,HSt

t

)
,
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HSt
t ∈ Rp×p denoting the system vectors and matrices of the measurement equation. We

follow here the notation of a state-model as given in Tsay (2010).

The superscript St implies that the parameters of the system vectors and matrices

depend on a hidden Markov chain. More precisely, we model St as the outcome of an

unobserved discrete-time, discrete-state Markov process with M different regimes. We

interpret the outcomes of St as states or regimes, i.e., St = i means that the process is in

regime i at time t. The transition probability

pi,j := P (St = j|St−1 = i) (14)

is defined as the probability of switching from regime i to regime j.

We now proceed to extend the Schneider and Tavin (2018) model to incorporate

a regime-switching variance risk premium, the third layer in our “modelling choices”

described above. The parameter πv is assumed to depend on a hidden Markov chain

St, that is, we consider a set of parameters πv,St from now on. Concretely, we assume

St ∈ {0, 1} in the following as a 2-state Markov chain, where the state St = 0 represents

the “normal” state and the state St = 1 a “crisis” state in the model. The transition

probabilities are given by

P =

p0,0 p0,1

p1,0 p1,1

 , (15)

with
∑1

j=0 pi,j = 1 for i = 0, 1. Led by our initial empirical inspection of our data, we

conjecture that the variance risk premium - and therefore also the risk premium parameter

πv - is negative in times of “normal” low market variances (St = 0) and positive in times

of “crisis” market turmoil (St = 1). The aim is then to apply the Kim filter to calculate

the probabilities of the model being in this crisis state St = 1.

To carry out this investigation, we will compare 21-day realized variance from the CLc1

futures contract to the implied variance given by the square of the OVX to determine

the variance risk premium. We make two assumptions at this stage. First, since we are

studying the nearby CLc1 series which is very close to maturity, we set the Samuelson

damping parameter λ of the full model to zero when calculating the realized 21-day

variance. Another reason for our choice of λ = 0 is that we are only working with
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the CLc1 series, but not any other contracts along the futures curve; since we don’t

see any term-structure of variances, we believe that the parameter λ cannot be estimated

accurately in any case. Second, we assume that the realized variance RVCLc1
t is represented

by the integrated expected variance under the physical measure P. So with a slight abuse

of notation, we denote the random variable and its estimator by the same variable. From

the specification of the Schneider and Tavin (2018) model, we can work out that

RVCLc1
t =

1

T − t

∫ T

t

EP[vs|Ft]ds = θ̃

(
1− 1− e−κ̃τ

κ̃τ

)
+

1− e−κ̃τ

κ̃τ
vt, (16)

OVX2
t =

1

T − t

∫ T

t

EQ[vs|Ft]ds = θ

(
1− 1− e−κτ

κτ

)
+

1− e−κτ

κτ
vt. (17)

Comparing equations (16) and (17), we obtain the following expression of the variance

risk premium in our model:

VRPt = RVCLc1
t −OVX2

t

= θ̃

(
1− 1− e−κ̃τ

κ̃τ

)
− θ

(
1− 1− e−κτ

κτ

)
+

(
1− e−κ̃τ

κ̃τ
− 1− e−κτ

κτ

)
vt. (18)

To show that the sign of the parameter πv,St corresponds to the sign of the VRP, we ap-

proximate the exponential terms appearing in (18) with a second-order Taylor polynomial

around zero and find

VRPt
··
= θ̃

(
1−

1−
(
1− κ̃τ + 1

2
(κ̃τ)2

)
κ̃τ

)
− θ

(
1−

1−
(
1− κτ + 1

2
(κτ)2

)
κτ

)

+

(
1−

(
1− κ̃τ + 1

2
(κ̃τ)2

)
κ̃τ

−
1−

(
1− κτ + 1

2
(κτ)2

)
κτ

)
vt

= θ̃

(
1− (1− 1

2
κ̃τ)

)
− θ

(
1− (1− 1

2
κτ)

)
+

(
1− 1

2
κ̃τ − (1− 1

2
κτ)

)
vt

=
1

2
κ̃τ θ̃ − 1

2
κτθ +

1

2
(κ− κ̃) τvt

=
1

2
κ̃τ
κ

κ̃
θ − 1

2
κτθ +

1

2
(κ− (κ− σπv)) τvt

=
1

2
σπvτvt. (19)
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Clearly, the expression (19) is positive if πv is positive, and negative if πv is negative,

since σ and v(t) are both (strictly) positive. Therefore, the two signs do indeed coincide.

A “simple” model for the variance risk premium. It is clear from these expres-

sions that our study of the VRP in fact only depends on the variance processes (5) and

(10) under the probability measures Q and P, respectively, but not on the futures SDEs

(4) and (9). From now on, we therefore focus our attention to the nested “simple” model

for the variance given by equations (5), (10), and the change-of-measure equation (8).

We take the instantaneous variance vt from the Schneider and Tavin (2018) one-factor

model as state vector st and set the transition equation as

st = (vt) = dt + T St
t st−1 +RSt

t ηt

=
(
κθ∆t

)
+
(

1−
(
κ− σπv,St

)
∆t
)
st−1 +

(
σ
√
sSt
t−1

)
ηt, (20)

where

ηt ∼ N (0,Qt) , (21)

and with initial condition

s0 = (v0) ∈ R1×1. (22)

Concretely, we set

dt =
(
κθ∆t

)
∈ R1×1, (23)

the transition matrix

T St
t =

(
1−

(
κ− σπv,St

)
∆t
)
∈ R1×1, (24)

RSt
t =

(
σ
√
sSt
t−1

)
∈ R1×1, (25)
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and

Qt =
(

∆t
)
∈ R1×1. (26)

Now, the parameter πv,St depends on the state of the Markov chain St, and it follows

that the matrices T St
t and RSt

t also become state-dependent.

Although the transition equation (15) is one-dimensional, we continue using bold

letters, indicating vectors and matrices, and interpret st, dt, ηt, and s0 as one-dimensional

vectors as well as T St
t , RSt

t , and Qt as 1× 1-dimensional matrices.

In contrast, the observations yt are two-dimensional. The measurement equation is

given by

yt =

RVCLc1
t

OVX2
t

 = cSt
t +ZSt

t st + et (27)

=

cSt
1,t

c2,t

+

ZSt
1,t

Z2,t

 st +

e1,t
e2,t

 , (28)

with

et =

e1,t
e2,t

 ∼ N2 (02×1,H) , (29)

and

H =

h211 0

0 h222

 . (30)

The first entry of the observation vector yt is the realized variance of the Clc1 futures

contract, and the second entry is the OVX2 measure of the implied variance.

As assumed above, only the parameter πv,St depends on the hidden Markov chain St

in this simple model. Therefore, the Gaussian white noise et as well as the matrix H are

independent of St, since πv,St does not affect these quantities. The reason why c2,t and

Z2,t are independent of St, is described below in (33) and (34). We have also assumed
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that the white noiseet is homoscedastic, i.e. that the matrix H is constant through time.

First, we cover the relationship between v(t) (i.e.st) and the realized variance RVCLc1
t

of the Clc1 futures contract. We obtain from (16)

cSt
1,t = θ̃St

(
1− 1− e−κ̃Stτ

κ̃Stτ

)
, (31)

and

ZSt
1,t =

1− e−κ̃Stτ

κ̃Stτ
, (32)

where κ̃St = κ− σπv,St and θ̃St = κθ
κ−σπv,St

= κ
κ̃St
θ. Note that (31) and (32) are calculated

with respect to the physical measure P; they are therefore dependent on the parameter

πv,St and the state of the hidden Markov chain St.

Second, we cover the relationship between vt (i.e. st) and the OVX2. We obtain from

(17)

c2,t = θ

(
1− 1− e−κτ

κτ

)
, (33)

and

Z2,t =
1− e−κτ

κτ
. (34)

Note that (33) and (34) are calculated with respect to the risk-neutral measure Q; they

are therefore independent of the parameter πv,St and of the state of the hidden Markov

chain St. Therefore, the relations

cSt
2,t = c2,t (35)

and

ZSt
2,t = Z2,t (36)

hold.
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Estimation with the Kim filter. The Kim (1994) filter is an extension of the well-

known Kalman filter for state-space models to regime-switching state-space models. (See

also the book by Kim and Nelson (1999) for an in-depth description of this method.) A

regime is a period of structural changes in the time series. Hamilton (1989) describes the

shifts in regime as “episodes across which the dynamic behavior of the series is markedly

different.” Kim introduced the filter in the wake of the contributions of Hamilton (1989)

and Lam (1990), and used it to study real GNP quarterly time-series figures from the

U.S. post-war period from 1952 to 1984. In Lam (1990) and Kim (1994), one of the main

goals of the filter is to detect “low-growth” and “high-growth” regimes in the data, and

even assign numerical probabilities for being in a given regime.

Recall that the Kalman filter recursively derives a forecast of the usually unobserved

state vector st, based on information up to time t,

st|t = E [st|F t] , (37)

and the conditional variance-covariance matrix

Σt|t = Var (st|F t) . (38)

The aim of the Kim (1994) filter is to form a forecast of st not only conditioned on

measurements F t, but also conditioned on the hidden M -state Markov chain St.

Therefore, we define the conditional expectation of st given measurements F t up to

time t, St−1 = i, and St = j, as

s
(i,j)
t|t := E [st|F t, St−1 = i, St = j] . (39)

Furthermore, we define the conditional variance-covariance matrix of st as

Σ
(i,j)
t|t := Var (st|F t, St−1 = i, St = j) . (40)

It should be noted that s
(i,j)
t|t from (39) as well as Σ

(i,j)
t|t from (40) would forecast

M2 different outcomes, corresponding to all possible combinations of i and j, at each

time-point t. Therefore, it is necessary to apply some approximations to make this filter

operable. The idea, according to Kim (1994), is to “collapse terms in the right way at
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the right time”. For our empirical study, we followed the steps of the algorithm described

by Kim (1994), and implemented his filter in C++.

Like the Kalman filter, the Kim filter derives as a byproduct the conditional log-

likelihood function

` (y1, . . . ,yT |F0) := ln (f (y1, . . . ,yT |F0)) =
T∑
t=1

ln
(
fyt|Ft−1 (yt|F t−1)

)
, (41)

such that the unknown parameters of the state-space representation with regime-switching

in (12) and (13), and in particular the transition probabilities from (14), can be estimated

via maximum-likelihood estimation. The parameters to be estimated are listed in Table

5.

1-State Model 2-State Model

Q mean-reversion speed κ κ

Q mean-reversion level θ θ

volatility σ σ

initial variance v0 v0

market price of variance risk
πv π0

v

– π1
v

transition probability
– p0,1

– p1,0

Table 5: Model Parameters to estimate

The P-parameters κ̃ and θ̃ for the 1-State Model, and κ̃0, κ̃1 and θ̃0, θ̃1 for the 2-State

Model, are then directly obtained from equation (11).

We have the usual positivity restrictions for the first four parameters in Table 5, and

also p0,1, p1,0 ∈]0, 1[. Note also that the restrictions κ̃0, κ̃1 > 0 mean that we need to

ensure π0
v , π

1
v <

κ
σ

in the estimation. The two measurement error parameters h0,0, h1,1 are

also included in our estimation procedure.

Last but not least, we point out that the Kim filter quantifies the probability of St

being in state j at time t, given information F t up to time t. We will describe the results

of our parameter estimation and the obtained probabilities in the next section.
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4 Empirical Results

4.1 Parameter estimates

Our estimation is conducted on the data presented in Section 2, over the same period.

The estimation relies on the Kim filter that we presented in Section 3.3. We contrast

the outcomes of our Markov-switching model to those of a standard stochastic volatility

model. The latter model corresponds to a model with a unique Markov state and is nested

in our general case. It corresponds to a case where transition probabilities p0,0 and p1,1

are set to 1 and the initial state is set to 0 (which is the so-called normal state). The

estimation of this model is conducted using a Kalman filter, even though we checked that

the estimation with the Kim filter yielded similar parameter estimates. The parameter

estimates of the two models are gathered in Table 6.

Several lessons can be drawn from the estimates in Table 6. First, the parameters

relative to the variance dynamics under the risk-neutral probability – which are θ, κ,

v0, and σ – are roughly similar in both models. Except the initial value v0, all these

parameters are estimated to be significant (at the 5% and 1% levels) in both models.

The first three parameters can interpreted in the context of unconditional mean E[vt|F0],

whose expression is v0e
−κt+θ(1−e−κt), as is standard for an Ornstein-Uhlenbeck process.

Therefore, the expected variance starts from v0 at initial date and converges to θ in the

long-run with a convergence speed equal to κ. The initial value, v0, is estimated to be very

similar in both models. In the one-state model, it is equal to 6.53%, which corresponds

to an annualized volatility of 25.56%, while in the two-state model, we respectively have

6.85% for the variance and 26.18% for the volatility. The long-run expected variance, θ,

is 10.01% in the one-state model, which is slightly higher than the value of 7.15% in the

two-state model. This means that the one-state model features an annualized volatility

equal to 31.64%, while it is 26.73% in the two-state model. The mean reversion speed, κ,

is quite higher in the two-state model that in the one-state, since it is equal to 11.6422

years-1 in the former case and 6.6167 years-1 in the latter. This represents quite strong

mean reversion speeds, especially in the two-state model, as it implies that only 15 days

are needed for the expectation E[vt|F0] to travel half the distance from initial value,

v0, to long-run value θ. The “half-life” amounts to 26 days in the case of the one-state

model. Finally, the parameter σ, which is the volatility of the variance, can be interpreted
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Parameters Symbol 1-state model 2-state regime
switching model

Speed of
adjustment

κ 6.6167
(0.0935)

11.6422
(0.1782)

Long run value
of variance

θ 0.1001
(0.0012)

0.0715
(0.0009)

Volatility σ 0.8892
(0.0113)

0.9638
(0.0104)

Initial variance
value

v0 0.0653
(0.9990)

0.0685
(0.9994)

Market price of
variance risk

πv,0 1.6703
(0.2449)

−9.7268
(0.2544)

πv,1 − 11.2504
(0.1901)

Transition
probabilities

1− p0,0 0.0 0.0075
(0.0017)

1− p1,1 0.0 0.0284
(0.0067)

Std dev. of
measurement
errors

h1 0.1055
(0.0013)

0.0061
(0.0001)

h2 0.0013
(0.0001)

0.0673
(0.0009)

Log-Likelihood ` 11747.7 13650.2

Table 6: Estimates and standard errors (in brackets) of our model and the model without
regime switches.

using the long-term unconditional variance of the variance process vt, equal to σ2

2κ
, which

amounts here to 5.97% in the one-state model and 3.99% in the two-state model. These

values correspond to long-term variance volatility of 24.44% and 19.97%, respectively.

The standard deviation of measurement errors (see equations (27)–(30)) are quite

different among the two models. Indeed, for the realized variance OVX2, corresponding

to parameter h1, the error has a standard deviation of 10.55% in the one-state model,

but only 0.61% in the two-state. Regarding implied variance corresponding to parameter

h2, this is the opposite: it amounts to 0.13% in the one-state model, but 6.73% in the

two-state.
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Obviously, both models differ drastically along the probabilities and the market price

of variance risk. The probabilities we report in Table 6 are the probabilities to move from

the crisis state to a normal state, 1 − p1,1, and the probability to transit from a normal

state to a crisis state, 1− p0,0. The former probability amounts to 2.84% (per day) and

is significantly different from 0 (at the 5% and 1% levels). In other words, the expected

length of a crisis is (1 − p1,1)−1 ≈ 35.2 days. The probability to leave normal state for

a crisis state is smaller and equals 0.75%, which implies that normal states feature an

expected length of 134.0 days. The probability is also significantly different from 0 (at

the 5% and 1% levels). Unsurprisingly, normal states are sizably more persistent than

crisis states. Another view on this persistence is that these quantities imply that the

unconditional probability to be in a normal state is p0 = 79.3% and the one to be in

a crisis state is the complement and equal to p1 = 20.8%. This is consistent with our

interpretation of “normal” state for the more persistent and more frequent state 0 and of

a crisis state for the other less frequent and less persistent state, 1.

The market price of variance risk is also drastically different between the models. The

price is positive and equal to 1.67 (and significantly different from 0) in the one-factor

model. In the two-factor model, the price is still positive but much higher to 11.25 in the

crisis state. In the normal state, the price is negative and equal to −9.73. Both prices

are significantly different from 0. This pleads in favor of the separation between the two

states, which cover episodes in which the market price of variance risk is dramatically

different. Separating the two states enables us to observe that not only the price of

variance risk differs among states, but its sign is even different: the variance risk turns

out to have a positive price in crisis states.

Finally, we can conclude the comparison between the two models by comparing their

log-likelihood. Since the one-state is nested within the two-state model, we can conduct a

likelihood-ratio test, consisting in computing twice the difference between log-likelihoods.

Formally, the test statistics is defined as:

t` = 2(`2f − `1f ), (42)

where `1f and `2f are the log-likelihoods of the one- and two-state models respectively.

The null hypothesis is that the “true” model is the one-state model, which is the smallest

model of the two. A large value for the test statistics means that the rejection of the
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null hypothesis. The statistics follows asymptotically a χ2 distribution with a number

of degrees of freedom equal to the difference of dimensionality between the two models,

equal to 3 here. Indeed, the two-state model additionally features, compared to the one-

state, two parameters for probability and one for the market price of risk. In our case,

we have t` ≈ 3804.9, which is far greater than the value of 16.3, which is the threshold

at the 0.1% level. We can thus be confident that the two-state provides a significantly

better fit to the data than the one-state model.

4.2 Probabilities

4.2.1 Description

One of the model’s outcomes is the computation of the times series of filtered probabilities.

Since our model only features two states, each probability is the complement of the

other one. We report in Figure 4 the probabilities to be in the crisis state over our

sample, as computed by our model estimated on the OVX data. We also report the

same probabilities, but computed for US GDP data. We also report in shaded gray

the contraction periods of the NBER.3 We can see that both probabilities are positively

correlated – the formal correlation amounting to 34%. This is especially visible in 2008-

2009 and in early 2021. The high probabilities values for GDP are also consistent with

the NBER timing of contractions. However, a number of episodes of high probabilities

for OVX crisis state are not reflected in GDP data (see 2012 or 2016 for instance).

The OVX crisis probability data are highly concentrated around two poles, 0 and 1.

More precisely, approximately 75% of probabilities are smaller than 10%, while almost

20% of them are greater than 90%. Around 5% of data points are between 10% and 90%.

Furthermore, we can check that the crisis probability also connects to VRP and to the

results of Table 5. We report in Table 7 the conditional statistics regarding episodes of

high and low probabilities. We consider a threshold of 0.5 for distinguishing high from

low probabilities. A date t will hence be considered as a crisis if the filtered probability

as that state is greater than 0.5. Conversely, the date will be considered as a normal

state. We also report the correlations of filtered probabilities with the same quantities as

in Table 5.

3See https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions.
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Figure 4: Time-series probabilities for OVX and GDP data.

Table 7 confirms the intuitions stated in Section 2. The crisis state is characterized

by positive VRP, while the normal state features negative VRP. The two states therefore

enable to distinguish between episodes of positive VRP from negative ones. This is also

reflected in the high correlation (around 60%) between the crisis probabilities and VRP.

Furthermore, crisis states are also characterized by high realized and implied volatilities,

as well as low and negative 21-day CLc2 returns. CLc1 prices also tend to be smaller

in crisis states than in normal ones. One-day CLc1 returns are pretty similar in crisis

and normal states. Comparing to Table 5, we can observe that the overall pattern of

conditional moments is pretty similar: conditioning on the sign of the VRP yields overall

similar results to when conditioning on the crisis probability being above or below 0.5.

4.2.2 OVX probabilities and conditional CAPM

In this section, we investigate to which extent using the uncovered OVX probabilities can

improve the CAPM on variance risk premium. More precisely, we test in the cross-section

to which extent the variance risk premium can be explained by the 21-day (log) return

on CLc contracts. The return and the variance risk premium therefore cover exactly

the same time-span. The log return we consider is the log-return associated to buying a

CLc2 contract at some date and reselling it 21 working days later as a CLc1 contract. We

4The 21-day CLc2 log-return is defined as ln(CLc1t/CLc2t−20), where CLc1t is the date-t price of the
CLc1 contract and CLc2t−20the date t− 20 price of the CLc2 contract.
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Unconditional
Crisis prob.s
≥ 0.5

Crisis prob.s
< 0.5

Correlations
with Crisis
prob.s(%)

Number of
observations

3185 715 2470 −

VRPt−20,t (%) −1.04
(10.58)

10.14
(16.48)

−4.28
(4.38)

59.17

Realized
variance

RVCLc1
t,t+20 (%)

13.68
(18.33)

25.74
(27.78)

10.19
(12.48)

36.61

Realized
variance

RVCLc1
t−20,t (%)

13.68
(18.33)

33.55
(29.31)

7.93
(6.12)

60.60

OVX2 (%)
(OVX2

t )
14.75
(12.49)

26.26
(18.80)

11.41
(7.04)

51.55

CLc1 price
F (t, T1) (USD)

74.12
(23.04)

61.96
(23.50)

77.65
(21.68)

−28.44

1-day CLc1
log-return (%)

−0.01
(2.24)

−0.06
(3.40)

0.01
(1.77)

−0.93

21-day CLc2
log-return (%)4

−0.86
(10.03)

−5.73
(13.61)

0.55
(8.20)

−26.95

Table 7: Conditional statistics regarding episodes of high and low probabilities to be in a
crisis state. In the last column, we also report the correlations of the crisis probabilities
with various quantities.

denote this return as r21,t, which we have called the 21-day CLc2 log-return in Footnote

4. It is defined as: r21,t = ln(CLc1t/CLc1t−20). The CAPM regressions we run is:

VRPLt−20,t = α + βr21,t + εt, (43)

where (εt)t≥0 are error terms. The results are gathered in Table 8. As can be seen, the

regression has a very low explanatory power and the R2 coefficient remains quite low:

around 10%.

We now investigate to how much knowing probabilities, and hence latent states, im-

proves the predictive power of the cross-sectional regression. We thus consider a con-

ditional CAPM. We first allow the intercept coefficient α to depend on the state. To
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determine the state, we follow Table 7. We use the cut-off value of 50% and condition on

whether the crisis probability, denoted by pt, is greater or smaller than 50%.5 We thus

run the two following regression:

VRPLt−20,t = αu1pt≥50% + αd1pt<50% + βr21,t + εt. (44)

The results of the regression are gathered in Table 8. All coefficients are still significant

and the R2 for both regressions increases by a large amounts. It reaches 42.2% (up from

10.4%) for the log VRP expression (2). This increase in the explanatory power can be

explained by the change of sign of the intercept coefficient α that remain negative in

normal times (as in the baseline regression) but turns out to be positive in crisis times

(state 1).

We finally further refine the regression and allow for β to be state-dependent. We run

the following regressions:

VRPLt−20,t = αu1pt≥50% + αd1pt<50% + βur21,t1pt≥50% + βdr21,t1pt<50% + ε2,t. (45)

Table 8 gathers the regression results. The regression coefficients βs keep the same signs

as in regression (44), but with different magnitudes. In particular, we have 0 > βu >

−1 > βd. However, the increase in the R2 is modest when adding state-dependent βs,

highlighting that most of the benefit stems from the state-dependent intercept.

5 Trading Realized vs Implied Variance

We now focus our attention on trading strategies and the use of our “regime-probabilities”

(see Figure 4) as trading signals.

So far, we have adopted a “variance swap” point of view in order to study the variance

risk premium. We compared the OVX2
t at time a given t to the future realized variance

RVCLc1
t,t+20 of the beginning 21-day trading period. Now we shift it to an “Ft” point of

view in order to use all the available information at time t, i.e. we use the OVX2
t and

5The results are not sensitive to a precise value of the cut-off and given the distribution of probabilities,
any value in the range [5%; 95%] yields very similar results.

29



Regression (43) Regression (44) Regression (45)

α −0.314
(0.009)

− −

αu − 0.262
(0.016)

0.280
(0.016)

αd − −0.472
(0.008)

−0.471
(0.008)

β −1.720
(0.088)

−0.922
(0.073)

−

βu − − −0.602
(0.110)

βd − − −1.177
(0.098)

R2 10.70% 42.18% 42.46%

Table 8: Results of the regressions (43)–(45). Point estimates and standard errors in
brackets.

the historic realized variance RVCLc1
t−20,t. We re-estimate our model parameters for this

shifted time series (RVCLc1
t−20,t,OVX2

t )t=1,...,3204, with t1 denoting the date 11/06/2007, on

which CLc1 closed at USD 65.97, and t3204 denoting the date 02/03/2020, on which CLc1

closed at USD 46.75.

Interestingly, the log-likelihood score of the estimation increases from 13650.2 to

14520.7. The model parameters only change very little; the increase in the ll-score

seems to come from both h1 and h2 now being smaller: before the values were hV S1 =

0.0061, hV S2 = 0.0673 (see Subsection 4.1 for the previous parameter estimates); the new

values are hFt
1 = 0.0022, hFt

2 = 0.0535. So when the model is estimated using data

available at time t, then it seems to fit slightly better.

There are various ways of trading volatility and variance on financial markets. One

is via variance swaps, as discussed previously. Another well-known strategy is called

“gamma-hedging” or “gamma scalping”. If a trader believes that future realized volatility

will be higher than the currently observed implied volatility, the trader buys a call option

and then delta-neutralizes it by going short the underlying share or futures contract. As

the market moves, the trader re-balances the hedge to stay delta-neutral, for example

on a daily basis. This leads in effect to a profitable “buy low, sell high” policy in the

underlying, and the more volatile the market is, the more profitable this strategy is

likely to be. In case the trader anticipates lower future realized volatility, he can sell the
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option and go through the opposite hedging strategy. If the market moves only little, this

strategy will be profitable. A more sophisticated version of gamma scalping consists in

buying or selling several options with different strikes in order to account for the volatility

smile, and then delta-hedging this option portfolio.

In the remainder of this section, we analyze strategies to directly trade the realized

variance RVCLc1
t,t−20 against the OVX2

t , i.e. to trade their difference or “spread”. We examine

five strategies:

(i). always going long this difference, i.e. trading ∆t := RVCLc1
t−20,t − OVX2

t on each day

in our time series;

(ii). always going short, i.e. trading −∆t = OVX2
t − RVCLc1

t−20,t on each day;

(iii). using the probabilities obtained via the Kim-filter as a trading signal: given a

threshold τ ∈ [0, 1], we go long ∆t if P(St = 1) ≥ τ , and short otherwise;

(iv). use a “naive” signal based on the previous day’s sign of ∆t;

(v). use both of these signals “jointly” and only trade if they point in the same direction.

The “probabilities-based” and “naive” trading strategy are illustrated in Table 9. The

strategies were initialized with the model being in the “normal” state St = 0, and therefore

going short, and for a threshold value τ = 0.5.

Table 10 summarizes the five strategies by showing the numbers of negative and

positive trades, the overall P & L, the average P & L per trade, and the standard deviation

of the daily profit or loss.

We can see that the “always long” strategy leads to an overall loss of −35.77, with

2492 negative (loss-making) trades and 712 positive (profitable) trades. The “always

short” strategy is obviously the opposite and leads to an overall profit of 35.77, with 712

negative and 2492 positive trades. This is in agreement with the VRP being negative

in the majority of cases, although we cannot directly compare these numbers to those

reported in Table because we have switched from RVCLc1
t,t+20 to RVCLc1

t−20,t.

The next three strategies perform much better. The “probabilities” strategy leads to

a profit of 160.56, with 403 negative and 2801 positive trades, and an average profit of

0.0501 with standard deviation 0.0851. The “naive” strategy leads to a profit of 176.85,

with 170 negative and 3034 positive trades, and an average profit of 0.0552 with standard
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Time RVCLc1
t,t−20 OVX2

t pt prob. P&L P&L naive P&L P&L

(%) based (daily) (cum.) (daily) (cum.)

1 0.0800 0.0675 33.48 -1 -0.0124 -0.0124 1 -0.0124 -0.0124

2 0.0812 0.0666 33.12 -1 -0.0146 -0.0271 1 0.0146 0.0022

3 0.0828 0.0680 33.23 -1 -0.0148 -0.0419 1 0.0148 0.0170

4 0.0857 0.0694 35.50 -1 -0.0163 -0.0581 1 0.0163 0.0333

5 0.0836 0.0697 32.08 -1 -0.0138 -0.0720 1 0.0138 0.0471
...

...
...

...
...

...
...

...
...

...

3199 0.0738 0.1563 0.00 -1 0.0824 159.94 -1 0.0824 176.23

3200 0.0765 0.1806 0.00 -1 0.1041 160.04 -1 0.1041 176.33

3201 0.0783 0.1884 0.00 -1 0.1101 160.15 -1 0.1101 176.44

3202 0.0869 0.2442 0.00 -1 0.1573 160.31 -1 0.1573 176.60

3203 0.1094 0.2627 0.00 -1 0.1532 160.46 -1 0.1532 176.75

3204 0.1368 0.2336 0.00 -1 0.0968 160.56 -1 0.0968 176.85

Table 9: Probabilities-based vs Naive Trading Strategy

deviation 0.0819. Finally, using both signals together leads to a profit of 168.70, with 99

negative and 2730 positive trades, and an average profit of 0.0527 with standard deviation

0.0814.

On closer inspection, the naive strategy outperforms the probabilities-based strat-

egy because it reacts immediately to a change in sign of the spread ∆t, whereas the

probability-based strategy is based on a filtering procedure and reacts less quickly. How-

ever, in an actual trading implementation, this could lead to less frequent reversals of

strategy always long always short p.b. naive joint

negative 2492 712 403 170 99

positive 712 2492 2801 3034 2730

profit -35.77 35.77 160.56 176.85 168.70

average -0.0112 0.0112 0.0501 0.0552 0.0527

std. dev. 0.0981 0.0981 0.0851 0.0819 0.0814

Table 10: Summary of Trading Strategies
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direction and therefore reduced trading costs. Also, using both signals together reduces

the number of negative trades from 170 to 99, and also slightly the standard deviation.

We also point out that the probabilities-based strategy is rather robust with regards

to the probability threshold τ . Table 11 shows the P & L of this strategy as a function

of the probability threshold used.

0.0 0.1 0.3 0.4 0.5 0.6 0.7 0.9 1.0

-35.77 156.99 159.31 159.78 160.56 160.74 161.77 162.88 35.77

Table 11: Threshold for Trading Signal

6 Conclusion

In this paper, we have presented a regime-switching volatility model for the oil market.

We introduce regime switches while preserving tractability. Indeed, only the market price

of volatility risk is affected by the changes of regimes, while the risk-neutral dynamics of

the model remains the same in all regimes. The risk-neutral model features Samuelson

volatility effect and stochastic volatility. This tractability allows us to estimate the model

on OVX and futures data using a Kim filter. One result of the estimation is that the

model enables us to distinguish two regimes: on the one hand a crisis state featuring

positive variance risk premium, high realized volatility and high implied volatility and

on the other hand a normal state with a negative variance risk premium, low realized

volatility and low implied volatility.

Another lesson from the model estimation is that the crisis probabilities inferred from

the oil market are correlated to the crisis probabilities inferred from GDP data. In

particular, in both cases, the 2008 crisis and the beginning of the Covid crisis are visible.

However, the oil data probabilities imply more “frequent” crisis than GDP data. A

possible route for future research would be to confront the estimated probabilities on the

oil market to those estimated on the stock market. This could enable us to distinguish

financial shocks that have affected the two markets from market-specific shocks.
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Appendix

A The VIX and the stock market

We present here the results of our methodology applied to the stock market, instead of

the oil market. More precisely, we use the S&P500 (henceforth, SPX) and the associated

VIX volatility index.

A.1 The data

We start with plotting in Figure 5 the realized variance time series for the SPX and

compare it to the two VIX2 time series. This is the parallel of Figure 1 that was plotted

for Clc1 and OVX. The two main messages that held for the oil market are still valid

here. First, long periods of low variance – either implied or realized – are interrupted by

short periods of very high variance. Second, the implied volatility is usually higher than

the realized variance except in periods of high variance. The main difference compared to

the Figure 1 is that besides the spike of 2008, the variance data for stocks present fewer

and lower spikes.

Figure 5: OVX2 and CLc1 realized variance, from 10 May 2007 to 31 January 2020.

To illustrate the last point, we report in Table 12 some descriptive statistics regarding

realized and implied variances – as we did in Table 3 for OVX. This confirms what was
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visible on Figure 5, as well as the comparison with OVX data.

Implied variance
(VIX2

t )
Realized variance

(RVSPX
t,t+20)

Realized variance
(RVSPX

t−20,t)

Mean 4.59% 3.68% 3.69%

Standard
Error

5.91% 7.48% 7.48%

Minimum
0.84% 0.11% 0.11%

(on 3 Nov 2017) (on 13 Nov 2017) (on 11 Oct 2017)

Q25 1.82% 0.81% 0.82%

Median 2.78% 1.66% 1.66%

Q75 4.93% 3.60% 3.61%

Maximum
65.38% 69.39% 69.39%

(on 20 Nov 2008) (on 30 Sep 2008) (on 28 Oct 2008)

Correlation
with VIX2

t

100.0% 74.1% 90.4%

Table 12: Realized vs Implied variance, from 10 May 2007 to 31 January 2020.

As we did for OVX, we define the variance risk premia as follows:

VRPSPX
t,t+20 = RVSPX

t,t+20 − VIX2
t ,

VRPLSPX
t,t+20 = ln(RVSPX

t,t+20/VIX2
t ),

where we use the SPX superscript to highlight that we focus on SPX and VIX. In Figure

5, we observed that the realized variance was below the implied one, except for some

episodes. It is thus expected that, as for the OVX, the variance risk premium is most

of the time and on average negative and that episodes of positive VRP are exceptional

and an indicator of special times. As we did in Table 5, we report in Table 13 several

conditional statistics so as to better contrast the episodes of positive volatility to those

of negative volatility.

Similarly to what we found in the OVX case, the episodes of positive variance risk

premium corresponds to a high implied and realized volatility, as well as negative 21-day

returns. These episodes can thus be thought of as crisis as was the case for the oil market.
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Unconditional Positive VRP Negative VRP

Number of
observations

3185 520 2665

VRPSPX
t−20,t (%) −0.93

(5.06)
4.81
(9.50)

−2.05
(2.30)

Realized
variance

RVSPX
t,t+20 (%)

3.70
(7.50)

8.84
(15.46)

2.70
(3.82)

Realized
variance

RVSPX
t−20,t (%)

3.70
(7.50)

9.93
(14.60)

2.48
(4.09)

VIX2 (%)
(VIX2

t )
4.63
(5.94)

8.62
(10.45)

3.85
(4.14)

SPX index
(points)

1811.02
(633.65)

1800.37
(635.04)

1813.10
(633.48)

1-day SPX
log-return (%)

0.02
(1.23)

−0.03
(2.11)

0.04
(0.97)

21-day SPX
log-return (%)

0.48
(4.57)

−4.76
(5.73)

1.51
(3.49)

Table 13: Conditional statistics regarding episodes of positive and negative VRP.

A.2 Model and estimation

We thus also consider a regime-switching model that we estimate based on VIX data.

The estimation procedure is the same as the one described in Section 3.3 and relies on

the Kim filter. The estimated parameters of the one- and two-factor models are gathered

in Table 14.

As in the OVX case, most estimates are significant – with the sole exception of the

initial variance value. As in the OVX case, the one- and two-factor models mostly differ

along the market price of variance risk. It is positive in the one-factor model and its sign

depends on the state in the two-factor model. This is similar to what was observed in

the parameters estimates on OVX data. Finally, comparing the two models using the

likelihood-ratio test of equation (42) yields a statistic tVIX
` = 1167.3, which is far larger

than the threshold of 16.3 at the 0.1% level. The two-factor model therefore provides a

better fit to the data than the one-factor model.
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Parameters Symbol 1-state model 2-state regime
switching model

Speed of
adjustment

κSPX
(0.1592)

4.9337
(0.1670)

Long run value
of variance

θSPX 0.0100
(0.0004)

0.0176
(0.0006)

Volatility σSPX 0.4137
(0.0053)

0.5468
(0.0096)

Initial variance
value

vSPX0 0.0150
(0.9763)

0.0119
(0.8997)

Market price of
variance risk

πSPX
v,0 8.0000

(0.5271)
−19.9974

(0.5792)

πSPX
v,1 − 8.0000

(0.4053)

Transition
probabilities

1− pSPX0,0 0.0 0.0100
(0.0026)

1− pSPX1,1 0.0 0.0491
(0.0128)

Std dev. of
measurement
errors

hSPX1 0.0003
(0.0000)

0.0006
(0.0000)

hSPX2 0.0480
(0.0006)

0.0409
(0.0005)

Log-Likelihood `SPX 19236.9 19820.5

Table 14: Estimates and standard errors (in brackets) of our model and the model without
regime switches.

A.3 Results

We start with plotting in Figure 6 the probability to be in the “crisis” state according to

the VIX model. As in Figure 4, we also report for the sake of comparison the probabilities

computed using GDP data and the contraction periods of the NBER. There is still a

positive correlation between the VIX and the GDP probabilities that amount to 25.8%.

There is also a positive correlation of 41.0% between the VIX and OVX probabilities.

We also compute some descriptive statistics conditional on the state – as done in

Table 5. These computations are reported in Table 15. The pattern is similar to the

one found in the case of OVX. The crisis state corresponds to high realized and implied
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Figure 6: Time-series probabilities for VIX and GDP data.

volatility, as well as negative one-month returns.

Finally, we also investigate the conditional CAPM to assess probabilities how much

knowing probabilities help improve the predictive power of the cross-sectional regression.

We start with our benchmark, the unconditional CAPM:

VRPLSPX
t = αSPX + βSPXrSPX21,t + εSPXt , (46)

where (εSPXt )t≥0 are error terms and r21,t = ln(SPXt/SPXt−21) is the 21-day log-return

on the SPX. The two conditional regressions that we consider are:

VRPLSPX
t = αSPX

u 1pSPX
t ≥50% + αSPX

d 1pSPX
t <50% + βSPXrSPX21,t + εSPXt , (47)

and

VRPLSPX
t = αSPX

u 1pSPX
t ≥50% + αSPX

d 1pSPX
t <50% (48)

+ βSPX
u rSPX21,t 1pSPX

t ≥50% + βSPX
d rSPX21,t 1pSPX

t <50% + εSPXt .

The results of all these regressions are gathered in Table 16. As can be seen, the coeffi-

cients of all regressions are significant at the 1% level and allowing for state-dependent

coefficient boosts the R2 coefficient by a large extent.
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Unconditional
Crisis prob.s
≥ 0.5

Crisis prob.s
< 0.5

Correlations
with Crisis
prob.s(%)

Number of
observations

3185 502 2683 −

VRPSPX
t−20,t (%) −0.93

(5.06)
3.99
(10.30)

−1.85
(2.27)

44.61

RVSPX
t,t+20 (%) 3.70

(7.50)
9.85
(15.57)

2.55
(3.63)

36.26

RVSPX
t−20,t (%) 3.70

(7.50)
12.07
(15.44)

2.13
(2.60)

50.01

VIX2 (%)
(VIX2

t )
4.63
(5.94)

10.19
(11.24)

3.59
(3.37)

41.73

SPX index
(points)

1811.02
(633.65)

1776.16
(710.12)

1817.54
(618.22)

−1.43

1-day SPX
log-return (%)

0.02
(1.23)

−0.07
(2.25)

0.04
(0.92)

−2.81

21-day SPX
log-return (%)

0.48
(4.57)

−3.18
(7.10)

1.17
(3.53)

−37.59

Table 15: Conditional statistics regarding episodes of high and low probabilities to be in
a crisis state. In the last column, we also report the correlations of the crisis probabilities
with various quantities.

Regression (46) Regression (47) Regression (48)

αSPX −0.550
(0.010)

− −

αSPX
u − 0.171

(0.022)
0.195
(0.023)

αSPX
d − −0.699

(0.009)
−0.693

(0.010)

βSPX −9.441
(0.217)

−7.039
(0.197)

−

βSPX
u − − −6.278

(0.300)

βSPX
d − − −7.614

(0.260)

R2 37.18% 54.80% 54.96%

Table 16: Results of the regressions (46)–(48). Point estimates and standard errors in
brackets.
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