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Abstract

In this article, we plug no-arbitrage constraints into the standard Nelson and Siegel model.
These no-arbitrage constraints do not impair the tractability and the parsimony, which have made
the standard Nelson and Siegel so popular. The resulting model outperforms significantly the stan-
dard model on the relevant aspects: (i) the fit of the yield curve, (ii) the rejection of the expectation
hypothesis and (iii) out-of-sample forecasts. This also produces better results in portfolio manage-
ment. We illustrate this in a simple mean-variance framework: One-month returns with our model
are more than 2 points greater than with standard Nelson and Siegel.

1 Introduction

Nelson and Siegel (1987) models are popular amongst financial experts, notably asset and debt managers

or central bankers. As reported in a recent article of the Bank for International Settlements (BIS

Monetary and Economic Department 2005), most of central banks use Nelson and Siegel approaches.

Two reasons explain this popularity: Its empirical performances and its simplicity. First, the Nelson

and Siegel model performs well in fitting the yield curve as well as in out-of-sample forecasting. The

replication of historical data is a central feature for models in general and the Nelson and Siegel

representation does it well. Concerning out-of-sample forecasts, few models perform as well as Nelson

and Siegel (Diebold and Li 2006). Second, Nelson and Siegel is a parsimonious and tractable framework,

since the zero coupon simply expresses yield as the affine transformation of a given 3 dimensional
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Markovian process. These three components interpret respectively as the level, the slope and the

curvature of the yield curve.

One of the main drawbacks of Nelson and Siegel is the lack of theoretical foundations. The model

only consists in an analytical expression for zero coupon yields. Whereas a large part of interest rate

models refers to the no-arbitrage theory, Nelson and Siegel does not. There are several reasons for

imposing no-arbitrage restrictions in interest rate models. First, from a financial point of view, no-

arbitrage appears as a reasonable assumption for bonds markets, which are deep and liquid. Second,

no-arbitrage is a preliminary for the derivatives pricing (vanilla caps and floors for the simplest ones).

Finally, a no-arbitrage framework provides an explicit definition of the term structure risk premium,

which reflects the relative price of different maturities across time and is of major interest for asset and

debt management.

In this model, we introduce explicit no-arbitrage conditions in the standard Nelson and Siegel

representation and we compare empirically this model to the standard one. One of the most striking

differences is the spread between term structure risk premia, which is on average 15% higher in the

standard model. In order to assess the consequences for portfolio management, we compare the two

models for the same investment strategy and the monthly average return (during 5 years) with no-

arbitrage is 2 points greater than without.

The two main insights of this article are (i) deriving properly a no-arbitrage Nelson and Siegel

representation in a general 3 factor framework and therefore linking it to a theoretical background and

(ii) investigating the empirical comparison with the standard model through several aspects: Yield

curve fitting, risk premium modeling, variance decomposition and out-of-sample forecast. This paper is

an extension of an article of Diebold, Piazzesi and Rudebush (2005). They were the first to be interested

in a no-arbitrage Nelson and Siegel representation and in reconciling the views of two branches in affine

yield curve modeling: The Nelson and Siegel and the no-arbitrage ones. Their no-arbitrage model

consists in two independent mean reverting factors and it admits a Nelson and Siegel representation

if one constraints the mean reverting speeds of both factors. We go further in two directions. First,

we derive exact analytical expressions in a three factor framework. Whereas they make assumptions

regarding the nullity of Jensen terms, we choose to keep complete expressions. It weakens the analytical

simplicity but we earn better empirical performances. Second, we investigate the empirical performances

of both models. To the best of our knowledge, this paper is the first empirical study of a three factor

no-arbitrage model with a Nelson and Siegel representation.
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We estimate both models using US monthly zero coupon prices from Feb. 1971 to Dec. 2000. We

use the McCulloch and Kwon (1993) dataset from February 1971 to February 1991, as well as Bliss

dataset from 1991 to Dec. 2000. We focus on the sixteen following maturities: 1, 3, 6, 9, 12, 15, 24,

36, . . . , 120 months. We use the Kalman filter technique to estimate the likelihood of models, since

it provides an interesting trade-off between the cross sectional and the times series constraints. At

each period, the model has indeed to fit the yield curve, i.e. the sixteen yields of the dataset, whose

maturities vary between 1 month and 10 years. Our choice avoids notably to suppose that certain

yields are priced without errors on the whole sample – meaning stochastic singularities –, which is for

example the case in the Chen and Scott (1993) estimation method.

Globally, the no-arbitrage Nelson and Siegel model performs significantly better than the original

one. We regroup comparison results in three fields: Practical, financial and finally economic ones.

From a practical point of view, empirical costs (including computational and tractability ones)

are in both models analogous. The estimation of the no-arbitrage model is not more complex than

the standard Nelson and Siegel one. In fact, the number of free parameters is in both models strictly

identical. We address the lack of parsimony, which is one of the usual drawbacks of factor term structure

modeling.

From a financial point of view, the no-arbitrage model (i) allows improving portfolio management

results and (ii) exhibits a very good fit on yield curves, as the standard version. The aspect is par-

ticularly important for asset or debt managers, who are currently using a standard Nelson and Siegel

model to determine their portfolio allocations. Our model improves average one month return of more

than 2 points (in a yearly basis). Regarding the second point, bond pricing errors are very low and are,

on absolute average, less than 10 basis points.

From an economic point of view, our model performs better in out-of-sample forecasting than the

random walk benchmark as well as than the standard Nelson and Siegel model. The information

contained in today’s yield curve regarding the future is better used in our model.

In the rest of the article, NS refers to the standard Nelson and Siegel representation and NANS to

the no-arbitrage one. x
(ns)
t (resp. x

(nans)
t ) refers to a variable modeled with NS (resp. NANS). In order

to lighten the notations, we skip the superscript when there is no doubt.
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2 The model: A three factor approach

We explain how we impose a Nelson and Siegel representation to a three factor term structure model

that results in a no-arbitrage Nelson and Siegel model. Two reasons motivate our choice of three factors.

First, the three factor case is quite general: It replicates the level, the slope and the curvature of the

yield curve. Second, a third factor is useful in modeling properly the risk premium. This is the first

direction in which we extend the work of Diebold, Piazzesi and Rudebush (2005), who studied a model

based on two independent mean-reverting processes. Before deriving the NANS model, we present the

standard Nelson and Siegel representation and affine term structure models.

2.1 Standard Nelson and Siegel representation

The Nelson and Siegel model provides a very simple expression for the zero coupon yields. The expres-

sion at time t of a zero coupon yield y
(τ)(ns)
t maturating τ periods later is the following:

y
(τ)(ns)
t = f

(1)
t + f

(2)
t

1− exp(−λτ)
λτ

+ f
(3)
t e−λτ (1)

A principal component analysis run on changes of time-series yields points out that three factors are

often sufficient to explain most of the variance (more than 97 %). Litterman and Scheinkman (1991)

first characterize these factors and call them respectively: ‘Level’, ‘slope’ and ‘curvature’. The Nelson

and Siegel model mimics relatively well this pattern. The zero coupon yield is indeed the weighted

sum of three factors
(
f

(i)
t

)
t≥0

. The three weights determine the cross sectional fit, whereas the three

factors determine the times series properties. To clarify the interpretation, it is useful to refer to the

representation proposed by Diebold and Li (2006). The zero coupon yield expression becomes:

y
(τ)(ns)
t = f

(1)
t + (f (2)

t + f
(3)
t )

1− e−λτ

λτ
− f

(3)
t

[
1− e−λτ

λτ
− e−λτ

]
(2)

The interpretation becomes straightforward. The first factor f (1) is the level of the yield curve and

affects all maturities in a uniform way. The sum of the second and third factors f (2) + f (3) is the

(opposite of the) slope and concerns more the short end of the curve than the long end. Finally, the

opposite of the third factor −f (3) is the curvature and is particularly important for the ‘middle’ of the

curve.

We do not chose the Diebold and Li (2006) representation because: (i) We keep the original definition

of the Nelson and Siegel representation and (ii) computation of the no-arbitrage Nelson and Siegel

representation is more tractable.
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The factors
(
f

(i)
t

)
t≥0

characterizing the time series behavior of the yield curve, are Gaussian :

d


f

(1)
t

f
(2)
t

f
(3)
t

 = K(ns)




θ
(ns)
1

θ
(ns)
2

θ
(ns)
3

−


f
(1)
t

f
(2)
t

f
(3)
t


 dt + Σ(ns)dW

(ns)
t (3)

Σ(ns) = diag
(
σ

(ns)
1 , σ

(ns)
2 , σ

(ns)
3

)
K(ns) =

(
κ

(ns)
ij

)
i,j=1,2,3

(4)

The cross sectional behavior needs estimating the parameter λ, which expresses as the inverse of a

maturity. The time series properties imply to estimate a VAR(1) process of dimension 3.

2.2 Factor Term Structure model

We use a general three factor model, which generalizes the Diebold, Piazzesi and Rudebush framework.

It is compatible with the Dai and Singleton (2000) classification, and according to their notations,

it belongs to the A0(3) family: The volatilities of the three factors are not stochastic, but constant.

Moreover, the factor dynamics is Gaussian, as in the standard Nelson and Siegel representation, and

the affine risk premium is unconstrained.

The short rate rt is the sum of three latent and time-varying processes
(
x

(i)(nans)
t

)
i=1,2,3

, which do

not have any financial or economic signification. The vector X
(nans)
t =

[
x

(1)(nans)
t x

(2)(nans)
t x

(3)(nans)
t

]>
follows a Gaussian diffusion under the historical probability P. W̃t is a R3 Brownian motion under P.

rt = x
(1)(nans)
t + x

(2)(nans)
t + x

(3)(nans)
t = [1 1 1]. X

(nans)
t (5)

dX
(nans)
t = −K̃(nans) X

(nans)
t dt + Σ(nans)dW̃t (6)

Σ(nans) = diag
(
σ

(nans)
1 , σ

(nans)
2 , σ

(nans)
3

)
K̃(nans) =

(
κ̃

(nans)
ij

)
i,j=1,2,3

The no-arbitrage hypothesis implies the existence of a risk-neutral probability Q. Coefficients with˜
refer to coefficients under the historical probability P, whereas coefficients without it refer to coefficients

under the risk-neutral one Q. According to the no-arbitrage pricing theory developed by Harrison and

Kreps (1979), Harrison and Pliska (1981) and Kreps (1981), asset prices equal the expectation under

this probability Q of their discounted payoffs. Remarking that the discount factor is exp(−
∫ t+τ

t
rsds),

the price B(t, τ) at date t of a zero coupon maturating in τ periods is: B(t, τ) = EQ
[
exp(−

∫ t+τ

t
rsds)

]
.

The change of probability from the historical one to risk neural one allows defining the instantaneous
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remuneration of the investor for taking the risk dW̃t. It builds up the so-called instantaneous risk

premium that we note Σ−1µt. This means that, as soon as one compensates the risk adverse investor

for taking this risk, he behaves as if he were in the risk neutral world. Girsanov has formulated this in

a theorem stating that the process Wt = W̃t − Σ−1
∫ t

0
µsds is a Brownian motion under Q.

According to the affine term structure literature, we suppose that the risk premium µ is affine:

µt =
(
θ
(nans)
i

)
i=1,2,3

+
(
κ

(nans)
i,j

)
i,j=1,2,3

X
(nans)
t

1. The two main advantages of this hypothesis are (i) to

keep risk neutral diffusions and historical ones analogous and (ii) to get affine expressions for zero coupon

yields. In our case, it is a sufficient condition to have Gaussian diffusions under both probabilities.

Under the risk neutral measure, the dynamics of the vector X
(nans)
t is the following:

dX
(nans)
t =

(
θ(nans) − (K̃(nans) − κ(nans)) X

(nans)
t

)
dt + Σ(nans)dWt

We define from now on K(nans) = K̃(nans) − κ(nans), which is the ‘mean reverting’ matrix under Q.

Using standard calculus, we derive the yield y
(τ)(nans)
t at date t of a zero coupon of maturity τ .

y
(τ)(nans)
t = − 1

τ

(
α(τ) + β(τ)X(nans)

t

)
(7)

Following Duffie and Kan (1996), the coefficients α(τ) and β(τ) are defined through the two following

ordinary differential equations with boundary conditions α(0) = 0 and β(0) = 03.

α′(τ) = θ(nans)> β(τ) +
1
2

3∑
i=1

σ
(nans)2
i βi(τ)2 (8)

β′(τ) = −K(nans)> β(τ)− [1 1 1]> (9)

The coefficients α(τ) and β(τ) determine the cross sectional behavior of the model and depend

essentially on the risk neutral dynamics of factors, i.e. on parameters θ(nans) and K(nans). The time

series properties of the term structure rely on the time-varying risk premium κ(nans).

2.3 Imposing a Nelson and Siegel representation of a factor term structure

model

In this section, we derive a Nelson and Siegel representation of the preceding factor term structure

model. Because both models offer an affine representation for the zero coupon yield, the easiest solution

consists in imposing identical factor weights for both cases. Comparing the equations (1) and (7), the

equality of factor loadings in both models means simply that:
1These notations are homogeneous to nans ones.
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β(τ) = −
[
τ

(1− e−λτ )
λ

τ e−λτ

]>
(10)

Since an ordinary differential equation (9) defines β(τ), imposing β(τ) also constraints coefficients

of (9) and thus K(nans). After some calculation, we find the following expression for the matrix K(nans):

K(nans) =


0 0 0

0 λ λ

0 0 λ

 (11)

Imposing a Nelson and Siegel representation for the factor term structure model constraints the

factor risk-neutral dynamics of X
(nans)
t . This result extends the result of Diebold, Piazzesi, and Rude-

bush (2005) in a three factor framework. The mean reverting speeds of their two independent factors

are respectively equal to 0 and λ, which is also the 2× 2 upper left submatrix of K(nans) in (11). Using

(8), it is straightforward to derive α′(τ) and then α(τ), which is the uniform deformation of the yield

expression. In the equation (7), we plug the expressions of β(τ) and α(τ) to get the NANS expression

of y
(τ)(nans)
t :

y
(τ)(nans)
t =



1

1− e−λτ

λτ
1− e−2λτ

2λτ

e−λτ

(1 + λτ) e−2λτ

λτ

λ2τ2



>

.



θnans
2

λ
− σ2

2

2λ2

θnans
3 − θnans

2

λ
+

σ2
2

λ2

−2σ2
2 + σ2

3

4λ2

−θnans
3

λ
σ2

3

4λ2

θnans
1

2λ

− σ2
1

6λ2



+


1

1− e−λτ

λτ

e−λτ

 .


x

(1)
t

x
(2)
t

x
(3)
t

 (12)

dX
(nans)
t = −(K(nans) + κ(nans)) X

(nans)
t dt + Σ(nans) dW̃t (13)

Diebold, Piazzesi, and Rudebush (2005) assume in their model that α(τ) is close to 0, which allows

them to derive an exact Nelson and Siegel representation. We do not follow them for two reasons:

(i) Imposing α(τ) = 0 means strictly speaking that σi = θnans = 0 for i = 1, 2, 3 and deterministic

factors. (ii) This assumption implies to neglect the Jensen terms, which are not null especially for long

maturities.

The yield expression (12) in the no-arbitrage Nelson and Siegel model is the sum of two terms:

7



(i) A Nelson and Siegel like expression and (ii) an expression gathering Jensen terms and constant

risk premium. The last term mainly reflects the no-arbitrage constraints. More precisely, the terms

in σ
(nans)2
i , i = 1, 2, 3 are Jensen terms and therefore reflect the fundamental risk of the yield curve.

Second, terms in θ(nans) reflect the constant risk premium of the yield curve. These terms deform

the yield curve in a uniform way, which does not depend on time t: The cross-sectional shape of the

curve is different, but time-series properties remain unchanged. Moreover, the functional form in τ of

those additional terms are consistent with the extension of Nelson and Siegel by Björk and Christensen

(1999).

To complete the interpretation, one can argue that factor dynamics are a priori different in both

models, because in the NANS model the arbitrage free dynamics is constrained through the equation

(11). Nevertheless, since the risk premium µ is unconstrained, the factor dynamics under P is as flexible

as in the NS model. The no-arbitrage conditions do not limit the dynamics of the model.

3 Empirical Estimations

We estimate the model using Kalman filter and maximum likelihood on US data from 1971 to 2000.

3.1 Data and the estimation method

3.1.1 Data

We use McCulloch and Kwon (1993) monthly nominal zero coupon prices from August 1971 to February

1991 with maturities of 1, 3, 6, 9, 12, 15, 18, 24, 36,. . . 120 months. It is an extension of McCulloch

U.S. Treasury term structure data appearing in the Handbook of Monetary Economics (1990). H.C.

Kwon collected the yields after 1983. For data from March 1991 to December 2000, we use Bliss data.

McCulloch and Kwon extract zero coupon yields from US data using cubic splines. In a few words,

the technique is the following. They suppose that the zero coupon curve is a function of unknown

parameters (here coefficients of a cubic spline function). They then express the prices of all traded

debt securities using these parameters, which are estimated by minimizing the mean square errors

between modeled prices and actual ones. They finally compute zero coupon yields for all maturities,

which builds the dataset. These data are estimates of the true yields and are therefore affected with

measurement errors.

8



3.1.2 Estimation method

For the estimation, we do not use the Chen and Scott (1993) technique, but the Kalman filter and

the maximum likelihood estimation, as in Dai and Philippon (2004). This technique offers a natural

trade-off between times-series properties of factors (i.e. x
(i)(nans)
t and f

(i)
t for the both models) and the

cross sectional fit. In appendix, we give a detailed description of the estimation procedure.

The Chen and Scott technique relies on the assumption that certain yields are perfectly priced and

do not suffer from any measurement error. Using these yields, one computes the dynamics of the latent

factors. Assuming then that other yields are priced with IID errors, one can express the likelihood and,

through maximization, estimate the other parameters. The main issue with this technique concerns

the selection of the perfectly priced yields. To the best of our knowledge, there is no criterion to select

them.

That is why we have decided to use the Kalman filter, which supposes that all yields are priced

with IID errors. The selection issue and the stochastic singularity disappear. This choice is moreover

consistent with the estimation of zero coupon yields, which are measured with errors.

3.2 Estimation of the standard NS model

In order to express the state-space system, we need some notations and definitions. τ1, . . . , τN are

the maturities available in the dataset, i.e. 1, 3, 6, 12,. . . 144 and 156 months (N = 16). Y (ns)(t)

is the vector gathering zero coupon yields of different maturities. We note ε
(ns)
t the 16 × 1 vector of

measurement errors. Their covariance matrix Ω(ns)
ε = diag(s(ns)

1 , . . . , s
(ns)
16 ) is supposed to be diagonal,

for two reasons: (i) Measurement errors are likely to be independent from each other, and (ii) these

errors can be seen as an econometric tool to overcome the preceding selection problem and independent

shocks are sufficient.

We define X
(ns)
t as the demeaned factors: X

(ns)
t =

[
f

(1)
t − Ef

(1)
t f

(2)
t − Ef

(2)
t f

(3)
t − Ef

(3)
t

]>
.

The vector of average factors is noted
[
θ
(ns)
1 θ

(ns)
2 θ

(ns)
3

]
=

[
Ef

(1)
t Ef

(2)
t Ef

(3)
t

]
. ηt is the vector of shocks

affecting X
(ns)
t . The covariance matrix of ηt is by construction diagonal: Σ(ns) = diag(σ(ns)

1 , σ
(ns)
2 , σ

(ns)
3 ).

The factor dynamics (3) becomes after discretization (I3 is the 3× 3 identity matrix):
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X
(ns)
t = (I3 −K(ns))X(ns)

t−1 + η
(ns)
t

Y
(ns)
t =

[
1

1− e−λ(ns)τi

λ(ns)τi
e−λ(ns)τi

]
i=1...N

(X(ns)
t +


θ1

θ2

θ3

) + ε
(ns)
t

We define now Λ(ns) = (I3 − K(ns)) and B(ns) =
[
1 1−e−λτi

λτi
e−λτi

]
i=1...N

the N × 3 matrix of

factors weights. Finally A(ns) is the constant deformation of the yield curve: B(ns)
[
θ
(ns)
1 θ

(ns)
2 θ

(ns)
3

]
.

We have to estimate 32 parameters: Θ(ns) = {λ(ns), κ
(ns)
ij , θi, σ

(ns)
i , s

(ns)
n }i,j=1,2,3 n=1,...,16.

With preceding notations, the factor dynamics and yield expressions simplify to the following state-

space system:

Y
(ns)
t = A(ns) + B(ns) X

(ns)
t + ε

(ns)
t (14)

X
(ns)
t = Λ(ns) X

(ns)
t−1 + η

(ns)
t (15)

The model is now written under the standard state-space system form, for example described in

Hamilton’s book (1994). Kalman filter techniques help to compute the best forecast Ŷ
(ns)
t+1|t of Y

(ns)
t+1 at

time t as a function of X
(ns)
t . One can therefore determine the distribution of Y

(ns)
t+1|t knowing X

(ns)
t

and then compute recursively the total likelihood. The likelihood maximization enables to estimate all

parameters. In appendix, we detail further the estimation procedure through the Kalman filter.

Two algorithms are combined to modify the standard Newton-Raphson method, used to maxi-

mize the likelihood: (i) Berndt-Hall-Hall-Hausman (1974) algorithm and (ii) Levenberg-Marquardt

algorithms (Levenberg 1944) (Marquardt 1963). The first algorithm avoids computing second order

derivatives and decreases the number of mathematical operations in each loop. The second algorithm

modifies the step between each recursion and optimizes the convergence speed toward the optimal value.

The table (Tab. 1) gathers estimation results of the parameter values with their associated standard

errors. Standard errors remain weak and almost all coefficients are accurately estimated. The last line,

Log Lik, computes the log-likelihood of the model, which is equal to 28034. Results have been checked

out with Dynare (Juillard 2006). Dynare, which is a free collection of MatLab routines allowing

solving, estimating and simulating non-linear and stochastic models with forward-looking variables.

Dynare results do not differ significantly from ours.
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3.3 Estimation of the NANS model

The estimation procedure for the no-arbitrage model is very close to the one described above. Only mi-

nor modifications are necessary to account for no-arbitrage restrictions. Zero coupon yields expressions

(12) and factors dynamics (13) can be treated as in the standard Nelson and Siegel case, regarding

the discretization and parameterization. Using analogous notations, we get the following state-space

system:

Y
(nans)
t = A(nans) + B(nans) X

(nans)
t + ε

(nans)
t (16)

X
(nans)
t = Λ(nans) X

(nans)
t−1 + η

(nans)
t (17)

We estimate again 32 parameters: Θ(nans) =
{

λ(nans), σ
(nans)
i , θ

(nans)
i , κ

(nans)
ij , s

(nans)
n

}
i,j=1,2,3 n=1,...,16

,

as in the standard NS model. No-arbitrage conditions decrease the number of independent parame-

ters of the factors term structure model and make it compatible with the one of the standard Nelson

and Siegel model. Both models are equally parsimonious, which cancels out one of the traditional

drawbacks of factor term structure models. The large number of parameters in factors term structure

models usually leads to poorly significant parameters, which deters their empirical performances, and

notably the out-of-sample forecast.

We compute recursively the likelihood and its maximization leads to the parameters gathered in

table (Tab. 1). As in the standard model estimation, almost all parameters are significant. The

log-likelihood is equal to 28281 in this model.

4 Comparisons of both models

In this section, we quantify to what extent no-arbitrage conditions improve the modeling of the interest

rate term structure. The standard NS model overestimates the term structure risk premium at the

height of 15% for 5 and 10 years maturities. Trading implications for asset and debt managers are of

important magnitude and reach several tens of basis points for realized returns on the last 5 years of

the dataset.

More precisely, the NANS model outperforms the standard NS for each of the following points: (i)

The yield curve fitting (ii) the variance decomposition (iii) the rejection of the expectation hypothesis

and finally (iv) the out-of-sample forecast performances. We explain more in details the meaning and

the relevance of each of these aspects in the next paragraphs.
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Models NS NANS

Parameters Values×10−2 Std Err.×10−2 Values×10−2 Std Err.×10−2

λ(?) 7.433 0.172 8.577 0.202

σ
(?)
1 0.322 0.013 0.288 0.007

σ
(?)
2 0.876 0.041 0.982 0.045

σ
(?)
3 0.705 0.037 0.806 0.041

θ
(?)
1 7.852 1.276 0.064 0.001

θ
(?)
2 -1.706 0.739 0.052 0.034

θ
(?)
3 0.274 0.221 0.122 0.028

κ
(?)
11 0.673 0.745 0.210 0.216

κ
(?)
12 -2.528 0.601 -3.117 0.866

κ
(?)
13 -4.728 1.060 -5.608 1.519

κ
(?)
21 1.747 2.055 -0.477 0.714

κ
(?)
22 5.206 1.590 -3.589 1.544

κ
(?)
23 0.533 2.839 -9.364 2.792

κ
(?)
31 1.766 1.672 0.851 0.599

κ
(?)
32 2.412 1.320 3.599 1.337

κ
(?)
33 13.301 2.294 7.234 2.336

Log Lik 28034.23 11.64 28280.98 44.16

Table 1: Estimation of both models

4.1 Likelihood Comparison

The log-likelihood comparison implies that the no-arbitrage model should be preferred to the standard

one. Even if both models are not nested, it is however possible to compare their accuracy. Because

they have strictly the same number of parameters, we can simply compare their log-likelihood. The

standard model selection criteria, as the Akaike’s information criterion (Aic) or the Schwarz’s Bayesian

information criterion (Bic), will indeed provide the same result. As we computed in the last line of

the table (Tab. 1), it appears that the log-likelihood of the no-arbitrage model, equal to 28281, is

significantly larger than the NS one, which reaches 28034. This first criterion pleads therefore in favor

of no-arbitrage constraints.

4.2 Factor signification

We compute in this section the correlation between modeled factors and empirical level, slope and

curvature of the yield curve. All correlations are high and the financial interpretation of the three

factors is analogous in both models, which confirms the use of level, slope and curvature as factor

labels.

No-arbitrage constraints make correlations larger and especially the one between the third factor

and the curvature, which goes up from 88.6% to 92.1%.
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Correlations (%)

Standard NS No-arbitrage NS

Level and first factor 98.58 98.74
Slope and second factor 95.44 96.05

Curvature and third factor 88.62 92.07

Table 2: Correlations between models factors and yield curve moments

4.3 Yield curve fitting

To measure the yield curve fitting, we compare the mean square errors between modeled yields and

actual ones for the 16 maturities of the dataset. The NANS model fits better the yield curve than the

standard one for almost all maturities. No-arbitrage restrictions improve the cross-sectional behavior.

The table (Tab. 3) gathers the mean square errors between modeled yields and real ones. The

differences are expressed in basis points. The bold number is the lowest spread between both. The

average spread for the no-arbitrage model is 8.3 basis points whereas it is almost 9.8 bp for the standard

one. The gain is important as well at the short end of the curve (maturities below 2 years) as the long

end (maturities greater than 5 years).

Spreads between model and reality (bp)

Maturity NS NANS

1 37.60 27.28
3 17.32 13.08
6 4.93 3.89
9 5.75 6.68
12 7.42 7.37
15 8.08 5.76
18 7.06 4.94
24 5.50 5.22
36 5.64 4.25
48 6.73 6.64
60 6.69 5.89
72 6.38 6.14
84 7.26 7.08
96 7.96 6.55
108 10.12 9.73
120 12.23 11.73

Mean 9.79 8.26

Table 3: Spreads between modeled and actual yields

4.4 Variance decomposition

We decompose the variance of the modeled forecast error in four terms. The three first ones depend

on the three factors and the last one is considered as unexplained. The smaller it is, the better the
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explanatory power of the model is. For almost all maturities and all forecast horizons, the unexplained

variance in the NANS model is lower than in the standard one. The difference between both models

rises in importance for long maturities and long forecast horizons.

At a given horizon h, the mean square error between the actual yield y
(j)
t+h of maturity j and its best

forecast ŷ
(j)
t+h|t at date t is equal to the sum of four terms. The first one depends only on the volatility2

σ1 of the first factor x
(1)
t . The two following terms have analogous interpretation and depend only

respectively on σ2 and σ3, which are the volatilities of the two other factors. The last term is only

function of the measurement standard error sj for the yield of maturity j: This is the unexplained part

of the total variance. We derive properly in appendix the computation of variance decomposition.

We compute the shares for 5 maturities: 1, 12, 36, 60 and 120 months and 5 horizons: 1, 12, 60,

120 months and ∞. The variance at the ∞ horizon is nothing else, but the unconditional variance.

The numbers in the table are percentages of the total variance for the given maturity and the given

horizon. For example, the number 49.82 in the ninth row and second column means that for the NANS

model, 49.82% of the yield with a maturity of 36 months at a 12 month forecast is explained by the

second factor.

The proportion of yield curve variance explained by the no-arbitrage model is almost always greater

than the one explained by the standard representation. The only exception is the one month forecast

of the 10Y zero coupon. As for the in sample fit, the explanatory power of the no-arbitrage model

is better for the short end and the long end of the yield curve. The relative gain increases with the

forecast horizon. The longer the horizon, the better the no-arbitrage model relative to the standard

NS one. No-arbitrage constraints and Jensen terms help to improve the explanatory power of factors

and this is especially true for long horizons.

The explanatory power of the three factors is also comparable for both models. For all horizons and

both models, the first factor share increases with maturity (e.g. from 8.47% to 52.61% at 12 month

horizon for the no-arbitrage model), whereas the second factor role is globally decreasing. The third

one can have the second role in the no-arbitrage model, whereas in the standard one it always plays

the third role.
2We skip the superscripts (ns) and (nans) as soon as equalities hold for both models.
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Shares of yield variances

NANS Standard NS

Maturity First Second Third Unexp. First Second Third Unexp.
(months) factor factor factor factor factor factor

1 month horizon
1 4.89 51.66 33.33 10.10 6.72 46.35 27.84 19.06
12 15.02 67.41 15.54 2.01 19.37 62.89 15.62 2.10
36 46.02 50.64 0.77 2.54 50.55 45.40 1.15 2.89
60 65.95 28.35 0.01 5.67 69.18 25.20 0.04 5.57
120 66.65 12.24 0.00 21.09 72.56 6.76 0.00 20.67

Mean 39.71 42.06 9.93 8.28 43.68 37.32 8.93 10.06
12 months horizon

1 8.47 59.63 30.35 1.53 9.49 60.34 26.87 3.29
12 16.97 63.32 19.50 0.19 20.15 63.43 16.16 0.23
36 34.10 49.82 15.90 0.16 42.37 47.67 9.70 0.24
60 44.01 37.78 17.87 0.32 55.42 33.95 10.19 0.43
120 52.61 25.09 20.52 1.76 66.45 19.85 11.89 1.79

Mean 31.23 47.13 20.83 0.79 38.78 45.05 14.96 1.19
60 months horizon

1 15.47 55.43 28.43 0.65 11.23 63.68 22.95 2.12
12 21.38 53.06 25.49 0.05 20.94 62.23 16.70 0.11
36 27.89 44.56 27.51 0.03 34.60 48.40 16.90 0.08
60 30.54 40.06 29.34 0.05 40.66 40.11 19.09 0.12
120 32.71 36.00 31.03 0.25 45.55 32.42 21.54 0.48

Mean 25.60 45.82 28.36 0.21 30.59 49.37 19.43 0.58
120 months horizon

1 18.51 51.80 29.20 0.47 11.40 63.68 22.81 2.08
12 23.15 49.27 27.53 0.03 21.07 62.01 16.79 0.11
36 27.38 43.43 29.15 0.01 33.95 48.73 17.23 0.07
60 28.92 40.72 30.32 0.02 39.37 41.16 19.34 0.11
120 30.10 38.41 31.33 0.14 43.61 34.33 21.62 0.43

Mean 25.61 44.73 29.51 0.13 29.88 49.98 19.56 0.56
∞ horizon

1 21.37 48.28 30.03 0.30 11.41 63.68 22.81 2.08
12 24.58 46.23 29.15 0.02 21.08 62.00 16.80 0.11
36 27.09 42.66 30.22 0.01 33.91 48.76 17.25 0.07
60 27.91 41.17 30.89 0.01 39.27 41.25 19.35 0.11
120 28.53 39.94 31.44 0.07 43.46 34.48 21.61 0.42

Mean 25.90 43.65 30.35 0.08 29.83 50.03 19.56 0.56
Mean 29.62 44.68 23.80 1.90 34.55 46.36 16.49 2.60

Table 4: Shares of variances
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4.5 Comparison of the accuracy in risk premium modeling

Because it is not possible to measure directly the accuracy of term structure risk premia, we use two

regressions to infer it. We do not want to test, if the in sample estimated yields exhibit this property

(i.e. generate the proper regression result) but if the model parameters, estimated through maximum

likelihood, are able to imply the predicted results, which is a stronger result. We use the procedure

described in Dai and Singleton (2002), which is the following. For each model, we generate 500 scenarii

through Monte-Carlo simulations. Each of them is a path of zero coupon yields, which counts 353

yields as the original dataset (going from Aug. 1971 to Dec. 2000). We then run the two regressions

for each path and compute the mean and standard deviations of coefficients.

4.5.1 Description of the two regressions

The first regression consists in measuring to what extent both models reject the expectation hy-

pothesis. This hypothesis assumes that the zero coupon rate at date t of maturity τ is the average

of expected future short rates between t and t + τ . If the zero coupon yield is the sum of expected

future short rates, it is equivalent (from date t point of view) to hold (i) a τ period zero coupon dur-

ing one year and then sell it as a security of maturity τ − 1 and (ii) to hold a 1 period zero coupon

until maturity. The expected holding return of a zero coupon does not depend on maturity and the

expected excess holding return (relative to the one month zero coupon) is null. Under the expectation

hypothesis, the so-called term structure risk premium (including Jensen terms) is constant through

time. Testing the expectation hypothesis consists in running the following regression for all maturities

n ∈ {3, 6, 12, . . . , 156}:

y
(n−1)
t+1 − y

(n)
t = an + bn

1
n− 1

(
y
(n)
t − y

(1)
t

)
+ εt (18)

Under the expectation hypothesis, one should get an = 0 and bn = 1. As shown in Campbell and

Shiller (1991), it does not hold empirically: bn is negative and decreases with the maturity n.

The second regression measures to what extent the dynamics of the model is properly defined

under the risk-neutral measure. The expectation hypothesis should hold as soon as one accounts for

risk. The expected holding returns, when risk is taken into account, should be the same whatever the

maturity.

The regression is the following (B(t, n) is the price at time t of a zero coupon of maturity n):
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y
(n−1)
t+1 − y

(n)
t +

1
n− 1

e
(n)
t = αn + βn

1
n− 1

(
y
(n)
t − y

(1)
t

)
+ εt (19)

e
(n)
t = Et

[
ln

(
B(t + 1, n− 1)

B(t, n)

)
− y

(1)
t

]
= expected excess holding period return

If the model exhibits a proper risk neutral dynamics, the coefficient βn should be equal to 1.

4.5.2 Regression results for both models

We run the preceding regressions on Monte Carlo simulations of the yield curves. It results that the

NANS risk premium is more accurate than the standard one, even if risk neutral dynamics are both

correctly defined.

The first regression. The graph (Fig. 1) plots results. The true value of coefficients bn, given by

the data, always lies in the confidence interval of the no-arbitrage model. For long maturities (greater

than 4 years), the fit is almost perfect between actual regression coefficients and the mean of modeled

ones. This is not the case with the NS model: Data values lie outside the confidence interval except

for some maturities. The no-arbitrage model rejects correctly the expectation hypothesis, whereas the

standard model fails to do so. It does not seem to exhibit the right pattern: The graph is too “flat”

compare to two others. We compute the slope for the three cases and their 95% confidence intervals:

Slope of expectation hypothesis coefficients(%)

Data NS NANS

Average − 2.63% − 0.90% − 3.70%
95% interval [− 2.15% ; − 3.10%] [− 0.40% ; − 1.40%] [− 3.00% ; − 4.30%]

Table 5: Average slopes of bn

As the table (Tab. 5) shows, we cannot reject the fact that the slope of the NANS model is equal

to the true value. On the opposite, the standard NS model does not exhibit the true value. This is

another clue in favor of a proper modeling of the risk premium with no-arbitrage.

The second regression. Both models perform relatively well the regression: The theoretical value

of 1 lies for all maturities in the confidence intervals of both models. However, average coefficients of

the no-arbitrage model are always closer to 1, even if it is not statically significant. The graph (Fig. 2)

plots regression coefficients of (19) with their respective 95% confidence intervals (dashed lines).
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Figure 1: Regression coefficients (18) of Vs. maturities

Figure 2: Regression coefficients (19) of Vs. maturities
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4.6 Out-of-sample forecast performances

In this section, we compare the out-of-sample forecast performances of both models for two horizons:

1 month and 1 year. The random walk is used as a benchmark. The NANS always performs better

than the standard model and than the random walk. Whatever the maturity and the forecast horizon,

no-arbitrage constraints improve the out-of-sample behavior. The improvement with no-arbitrage con-

straints is for most maturities significant at the 10% level for the one month horizon and at the 5%

level at the 1 year horizon. It means that the information contained in today’s no-arbitrage NS term

structure – and particularly in the risk premium – helps to better anticipate tomorrow’s yields.

To estimate the forecasts at date t + 1 and t + 12, we estimate both models until date t. We

compute then the one month and one year out-of-sample forecast Ŷt+1|t and Ŷt+12|t for the 16 yields

of the dataset (1, 3, 6, 9, 12. . . , 120 months). We finally estimate these forecasts for the 60 last dates

of the dataset, for the NANS model, the NS one and the random walk. Using these estimations, two

criteria help to assess the accuracy of out-of-sample forecast performances: The Root Mean Squared

Error (RMSE) and the Mean Absolute Deviation (MAD). If one notes ŷ
(τ)
t|t−j the j months (j = 1 or 12

months) forecast of yield y
(τ)
t of maturity τ at time t, the expression of both criteria is (T is the last

date in the dataset):

MAD(j)(τ) =
1
60

T∑
t=T−59

∣∣ŷ(τ)
t|t−j − y

(τ)
t

∣∣ (20)

RMSE(j)(τ) =

√√√√ 1
60

T∑
t=T−59

(
ŷ
(τ)
t|t−j − y

(τ)
t

)2 (21)

Looking at equations (20) and (21), it is straightforward that the smaller the criterion is, the better

the forecast performance of the model. We use Diebold and Mariano (1995) and (2000) test to measure

whether the NANS forecasts are significantly more accurate than both other ones. For each maturity

and each horizon, we compare NANS to the two other forecasts (RW or NS). In tables (Tab. 6) and

(Tab. 7), one star means that the result holds at the 10% level and two mean that it holds at the 5%

one. For both forecasts, NANS perform significantly better than the RW especially for both ends of

the curve and for the long horizon (i.e. one year).

Three reasons may explain the success of NANS in the out-of-sample forecast. First, as pointed out

by Duffee (2002), a time-varying risk premium, similar to ours, is of great help in forecasting, because it

makes the information in today’s term structure more relevant for predicting tomorrow’s yields. Second,

our model offers an interesting channel to understand how it helps to beat the random walk forecast.
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1 month Forecast Performances (×10−3)

MAD criteria RMSE criteria

Maturity RW NANS NS RW NANS NS

1 2.5487 2.4408∗∗ 2.5458 3.6375 3.0990∗∗ 3.5475
3 1.7217 1.6734 1.7302 2.4596 2.3620 2.3720
6 1.9335 1.8703∗ 1.9218 2.5233 2.4593∗ 2.4693
9 2.0653 1.9996∗ 2.0532 2.7028 2.6654 2.6803
12 2.3523 2.2938 2.3429 2.9997 2.9626 2.9920
15 2.3860 2.3266 2.3800 2.9937 2.9854 3.0026
18 2.4508 2.3962 2.4516 3.0282 3.0199 3.0485
24 2.5568 2.4936∗ 2.5552 3.1741 3.1653 3.1977
36 2.6116 2.5315∗ 2.5859 3.1958 3.1872 3.2189
48 2.6225 2.5602∗ 2.6085 3.2571 3.2281 3.2653
60 2.5999 2.5343∗ 2.5801 3.2044 3.1755 3.2084
72 2.4717 2.3995∗∗ 2.4405 3.0969 3.0494∗ 3.0979
84 2.4187 2.3414∗∗ 2.3739 3.0636 3.0160∗ 3.0614
96 2.2827 2.2249∗∗ 2.2635 2.9322 2.8864∗ 2.9198
108 2.2633 2.2023∗∗ 2.2433 2.9401 2.8941∗ 2.9311
120 2.2830 2.2156∗∗ 2.2464 3.0032 2.9562∗ 2.9864

Mean 2.3480 2.2815 2.3327 3.0133 2.9445 2.9999

Table 6: Forecast performances of both models

12 months Forecast Performances (×10−3)

MAD criteria RMSE criteria

Maturity RW NANS NS RW NANS NS

1 10.0970 9.4646∗∗ 10.5225 12.8757 11.9131∗∗ 13.2608
3 9.9668 9.3626∗ 10.0844 12.9128 12.1191∗ 12.9538
6 9.9633 9.4821∗ 10.7225 12.8465 12.2805∗ 13.6449
9 10.1248 9.6144∗ 11.0781 12.9267 12.4266∗ 14.0849
12 10.1598 9.7236∗ 11.2087 12.9839 12.5256∗ 13.7495
15 10.1043 9.7701∗ 11.0899 12.8509 12.4629∗ 14.1529
18 10.0815 9.7242∗ 11.0216 12.7405 12.3509∗ 14.0977
24 10.0852 9.6041∗ 10.5948 12.4836 12.0219∗ 13.6561
36 9.6209 9.0444∗∗ 10.3803 11.7932 11.1931∗∗ 12.9283
48 9.2699 8.5731∗∗ 10.3801 11.2154 10.4809∗∗ 12.587
60 9.1660 8.3847∗∗ 10.2137 10.9690 10.1018∗∗ 12.3202
72 8.7552 7.8942∗∗ 10.6504 10.4415 9.5314∗∗ 12.0781
84 8.7129 7.7580∗∗ 10.9269 10.2765 9.2708∗∗ 11.7688
96 8.3753 7.3888∗∗ 11.3287 9.9143 8.8874∗∗ 11.6258
108 8.2699 7.2672∗∗ 11.3779 9.8485 8.8166∗∗ 11.3635
120 8.2562 7.2599∗∗ 11.0228 9.7736 8.7099∗∗ 11.1515

Mean 9.4381 8.7698 10.7877 11.6783 10.9433 12.8390

Table 7: Forecast performances of both models
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The random walk is a polar case of our no-arbitrage NS representation. It is the first factor of our

model in the risk neutral world. If the RW had beaten our model, it would have meant that adding a

risk premium and two other factors with no-arbitrage restrictions would have been useless in improving

the forecast performance. The supplementary factors and associated constraints (no-arbitrage ones)

are therefore likely to help in forecasting. Finally, our no-arbitrage model remains parsimonious, which

avoids one of the traditional drawbacks of affine term structure models. The large number of parameters

in those kinds of models is sometimes evoked to explain their failure in forecasting relative to more

parsimonious ones.

4.7 Risk premia and trading the yield curve

In this section, we investigate the practical implications of preceding results in terms of (i) risk premium

modeling and (ii) portfolio management. First risk premia implied with both models differ quite widely.

NS risk premium exceeds NANS one with 30 bp (15% in relative terms). Second, portfolio returns with

our model are larger than with NS. The average realized return on the last 60 months differs from 2

points in absolute terms. In relative terms, the NANS implied return is almost 3 times greater.

4.7.1 Term structure risk premium

We begin with comparing the risk premium modeling because it is a key factor in portfolio management.

The difference between risk premia modeled by NS and NANS has an order of magnitude of 30 bp,

which means more than 15% in relative terms. The relative cost of different maturities suffers from

important differences, which is likely to impact strongly portfolio or debt management. This difference

in risk premium modeling is a consequence of the differences in the expectation hypothesis regressions

and in the out-of-sample forecasts. Preceding results plead therefore in favor of a more accurate risk

premium for the NANS model relatively to the standard NS one, even if we need further investigation.

We include Jensen terms in the risk premium RP
(n)
t and we define it as the differences between the

zero coupon yield of maturity n at time t and the average of expected future short rates (equal in our

model to the one month yield y
(1)
t+k):

RP
(n)
t = y

(n)
t − 1

n

n−1∑
k=1

Etrt+k (22)

To compute the right hand side of (22), we come back to the yield definition and to the state-space

systems (equations (14), (15), (16) and (17)), which have the following generic form for both models:
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Yt = A + B Xt + εt

Xt = Λ Xt−1 + ηt

The best forecast Ŷt+k|t at horizon k of Yt is equal to A + B Λk Xt. Since Etrt+k = ŷ
(1)
t+k|t is the

first component of vector Ŷt+k|t, this allows computing the right side of the equation (22).

Mean and Standard deviations of risk premia (%)

Standard NS No-arbitrage NS

5 Years: Mean (Standard deviation) 1.791 (1.131) 1.459 (1.076)

10 Years: Mean (Standard deviation) 2.268 (1.288) 1.729 (1.202)

Table 8: Mean and Standard deviations of risk premia

The average size of the NANS (NS) risk premium for the 5 year bond is 1.46% (1.79%) and 1.73%

(2.27%) for the 10 year one. Time variations of the 10 Y premium are plotted on (Fig. 3). The graph

(Fig. 4) shows the evolution of the difference between NS risk premium and NANS one. Even if not

reported, patterns for the 5Y risk premium are similar. It reflects the overvaluation of the risk premium

with standard NS relative to our model. Even if preceding comparisons between both models seem to

show that the risk premium of our model is more accurate, we investigate it in portfolio management.

Figure 3: 10 year risk premium Figure 4: Difference btw. 10 year RP

4.7.2 Portfolio management

We study the consequences of preceding results regarding risk premia on portfolio management. In

a simple mean-variance portfolio framework, the NANS model implies an average one month return
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that is 200 basis points greater than the one of the NS model. The result remains true for the ex-post

welfare. This insures that a larger return on average is not the direct consequence of a riskier strategy.

We consider the following portfolio strategy. Each month, we invest a fraction ωi of our wealth

(normalized to 1) in a zero coupon bond of maturity τi, which lies between 1 month and 10 years.

The investment follows a simple mean-variance criterion, which consists in maximizing the one month

expected return of the portfolio minus a share of its expected variance. If we note Ri (i = 1, . . . 16) the

return of each zero coupon, Rπ the return of the portfolio and γ the (constant absolute) risk aversion

of the investor, the investment strategy sums up to:

max
ω

ERπ −
γ

2
VRπ

s.t.

 Rπ(ω) =
∑16

i=1 ωi Ri∑16
i=1 ωi = 1

As for the out-of-sample forecast, we compute the optimal portfolio shares and the realized returns

for the last 60 months of the dataset. Instead of the welfare, we compute more simply the realized

average return minus γ/2 times the realized variance, which has the same meaning.

Portfolio Performances

CS NANS NS

γ =1
Return (Y/Y %) 0.49% 6.19% 1.90%

Welfare (%) 0.49% 4.67% 1.79%
Times as 1st rank 12 35 13

γ =2
Return (Y/Y %) 0.49% 3.00% 1.25%

Welfare (%) 0.48% 2.37% 1.17%
Times as 1st rank 12 34 14

γ =3
Return (Y/Y %) 0.49% 2.52% 0.87%

Welfare (%) 0.48% 2.01% 0.83%
Times as 1st rank 11 35 14

γ =4
Return (Y/Y %) 0.49% 2.02% 0.77%

Welfare (%) 0.47% 1.62% 0.71%
Times as 1st rank 10 35 15

γ =5
Return (Y/Y %) 0.49% 1.50% 0.57%

Welfare (%) 0.47% 1.22% 0.56%
Times as 1st rank 12 34 14

Average
Return (Y/Y %) 0.49% 3.05% 1.07%
Welfare (×10−3) 0.48% 2.38% 1.01%

Times as 1st rank 11.4 34.6 14

Table 9: Portfolio performances of both models
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We compare then the results for our model (NANS), for the standard Nelson and Siegel (NS) and

for the constant strategy (CS), which consists in investing an equal weight 1/16 of wealth in each bond.

NANS model outperforms both others for the mean realized return and for the ex-post welfare: The

larger return of NANS is not impaired by a larger variance.

For values of risk aversion varying between 1 and 5, the spread between returns of NS and NANS

vary from 429 bp (γ = 1) to 93 bp (γ = 5) with a mean equal to 198 bp. The ‘welfare’ improvement

varies from 0.66 points to 2.88 points.

Moreover, our model is the best in 58% of the cases. For almost 35 periods amongst the 60

considered, our model beats the two others. The constant strategy is the best in 19% of cases and the

NS only in 23%. The table (Tab. 9) gathers results. The return is the average realized yearly return

on a yearly basis. Times as 1st rank is the number of periods (amongst the 60), where a given model

is better than the two others.

5 Conclusion

This article provides a simple model, close to the standard NS representation, with no-arbitrage cross-

sectional restrictions. The main difference with an unconstrained factor term structure model is the

factor risk-neutral dynamics. The main differences with a standard NS model are the Jensen and

the constant risk premium ones (time series constant terms), whose expression is constrained with

no-arbitrage.

The explicit risk premium defined in our model is on average 15% lower than the one with the stan-

dard NS, which leads to more efficient portfolio allocations. For the basic strategy we have considered,

the average return is roughly 2 points larger than the one with Nelson and Siegel. This improvement

is the consequence of a better replication of several stylized facts: The yield curve fitting, the variance

explanation, the rejection of the expectation hypothesis and the out-of-sample forecast. It is note-

worthy that this behavior is not a consequence of a richer framework because both models have the

same number of parameters and are as parsimonious as each other. The explicit definition of a risk

premium, even if linear, is efficient in capturing the information in the current curve for the prediction

of tomorrow’s one. No-arbitrage restrictions constrain the term structure modeling in a relevant way.
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Appendix

A Variance decomposition

In this section we derive explicit expressions for the variances decompositions. Suppose that one has

the following state system (with standard notations):

Yt = A + BXt + εt

Xt = ΛXt−1 + ηt

We suppose that all eigenvalues of Λ lie in the unit circle3. One can write the following MA(∞)

representation for Yt:

Yt = A +
∞∑

k=0

BΛkηt−k + εt

The error between the forecast Ŷt+h|t at date t of Y at horizon h > 0 and actual Yt+h is therefore:

Yt+h − Ŷt+h|t =
h−1∑
k=0

BΛkηt+h−k + εt+h (23)

Because the covariance matrix of η is diagonal and because η is independent of ε (this is true for

our both models), the expression of the mean square error MSEj(h) for the component j at horizon h

is the following (We note Eii the 3× 3 matrix with a 1 in position (i, i) and 0 elsewhere):

MSEj(h) = E
[
(Y j

t+h − Ŷ j
t+h|t)

2
]

=
3∑

i=0

{
h−1∑
k=0

[
B Λk Eii Λk> B>]}

j︸ ︷︷ ︸
=Kj

i

σ2
j

+ s2
j

One can then compute the variance share of yield j at horizon h explained by the ith (i = 1, 2, 3)

factor ωj
i (h) and the residual ωj

r(h):

ωj
i (h) =

Kj
i

MSEj(h)
σ2

i i = 1, 2, 3

ωj
r(h) =

1
MSEj(h)

s2
j

With h →∞, one gets the unconditional variance decomposition.

3This assumption is true for both models, the standard one and the no–arbitrage one.
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B Kalman filtering and ML estimation

This section refers to the ML estimation using Kalman filter estimations. Suppose that the state–space

system has the following expression:

Yt = A + B Xt + εt (24)

Xt = Λ Xt + ηt (25)

We suppose that the perturbations εt and ηt are independent of each other and of the initial state

X0. Their respective variance matrices are Σε and Ση.

The standard Kalman filter update equations provide an expression for the forecasts X̂t+1|t of the

state process Xt and associated mean squared errors Pt+1|t:

X̂t+1|t = ΛX̂t|t−1 + ΛPt|t−1B
>(

BPt|t−1B
> + Σε

)−1(Yt −A−BX̂t|t−1)

Pt+1|t = Λ
[
Pt|t−1 − Pt|t−1B

>(
BPt|t−1B

> + Σε

)−1
BPt|t−1

]
Λ′ + Ση

Regarding the initial conditions, X1|0 is the best forecast at date 0 of X1. Because of the stationarity

of X under the historical probability P, this is simply the unconditional mean of X.

X1|0 = EP [X] (26)

Again because the process X is stationary, the initial mean squared error is defined as:

vec(P1|0) =
(
Ir2 − Λ⊗ Λ

)−1
vec(Ση) (27)

In the preceding equation, r is the number of components of X (= 3), ⊗ is the Kronecker product,

and vec(M) is the vector representation of the matrix M4.

One can now remark that the distribution of Yt knowing It (representing the information available

at time t) is the following:

Yt

∣∣It  N
(
A + BX̂t+1|t, BPt+1|tB

> + Σε

)
(28)

One can then compute the log likelihood L corresponding to the observation Ỹtk
. Θ is the set of

parameters one needs to estimate.

LỸtk
(Θ) = −1

2
[
ln(2π) + ln

(
det(BPt+1|tB

> + Σε)
)

(29)

+(Ỹtk
− (Aµ + BX̂t+1|t))>(BPt+1|tB

> + Σε)−1 × (Ỹtk
− (A + BX̂t+1|t))

]
We compute likelihood recursively and then we maximize it relative to Θ.

4If M = (mij)i=1...n,j=1...p then vec(M) = [m11 m21 . . . mn1m12 . . . mnp]>
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