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Abstract

In their seminal article, Hansen and Scheinkman (2009) proved that Perron-

Frobenius theory helps to recover a probability measure that can be used to price

long-term claims. In this paper, we show that the recovered probability also contains

information about market structure. More precisely, we provide an example in

which Perron-Frobenius theory can be used to measure the degree of limited market

participation.
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1 Introduction

Asset prices contain information about both stochastic discount factors and transition

probabilities. Extracting this information using Perron-Frobenius (PF, henceforth) the-

ory was pioneered by Backus, Gregory, and Zin (1989). More precisely, Hansen and

Scheinkman (2009) proved that applying PF theory to Arrow-Debreu (AD, henceforth)

security prices makes it possible to recover a probability measure, which provides useful

insights into the pricing of long-term claims. As shown in Ross (2015), recovered probabil-

ity is equal to actual probability under certain specific conditions. Borovička, Hansen, and

Scheinkman (2016) have generalized Ross’s result and have proven that recovered prob-

ability differs from actual probability by a martingale component, which is trivial only

under Ross’s conditions. Interestingly, most asset pricing models feature a non-trivial

martingale component.

In this paper, we provide an example to show that PF theory can be used to recover

information not only about long-term pricing but also about market structure. Our ex-

ample features an economy populated by two heterogeneous agents trading AD securities.

Agent heterogeneity generates an endogenous market segmentation. The same agent does

not trade all securities in all states of the world and the market arrangement is not the

same for all maturities. Applying PF theory in this context delivers two main results.

First, the long-term return recovered by PF theory differs from the actual return due

to limited market segmentation. The largest eigenvalue of the matrix of AD prices now

reflects a long-term discount rate that is distorted by limited participation and agent

heterogeneity. Second, the recovered and actual long-term one-period expected holding

returns also differ from one another. However, agent’s heterogeneity can be recovered

from these differences in returns. Consequently, PF theory can help us to quantify the

severity of limited market participation. To the best of our knowledge, this is the first

paper showing the link between PF theory and financial market structure.
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2 Set-up

We consider an economy populated by two agents, A and B, with two states of the world,

1 and 2. The process determining states of the world follows a first-order Markov chain

characterized by transition probabilities π and ν, which are the probabilities of remaining

in states 1 and 2, respectively. Agents can trade two AD securities. The price in state

i = 1, 2 of the AD security paying off in state j = 1, 2 of the next period is denoted by

qij. The pricing kernel vkij of agent k = A,B in state i = 1, 2 for a payoff in state j = 1, 2

of the next period is assumed to be equal to:

vkij = βk
mk
i

mk
j

. (1)

We introduce two sources of heterogeneity among agents: (i) the coefficient βk and (ii) the

ratio mk1
mk2

(or equivalently mk2
mk1

) for k = A,B. These two sources are the minimum compo-

nents required to generate a nontrivial market structure, which also differs for securities

with different maturities. Such a set-up could, for instance, result from a no-trade equi-

librium in an economy featuring heterogeneous agents (in terms of β and endowments),

credit constraints, and zero net asset supply. See for instance Krusell, Mukoyama, and

Smith (2011) or Challe, LeGrand, and Ragot (2013) for such set-ups.

The framework of this example is a slight deviation from (see Borovička, Hansen,

and Scheinkman, 2016; Ross, 2015). Note that Ross’s recovery result holds here when

heterogeneity is absent, i.e., when βA = βB and mA1
mA2

=
mB1
mB2

.

We introduce the following notation:

τm =
βA

βB
mB

2

mB
1

mA
1

mA
2

, τβ =
βA

βB
. (2)

The two quantities τm and τβ summarize the two heterogeneity dimensions and measure

the deviation of the actual economy from the recovery setup, which corresponds to τβ =

τm = 1. We also make the following assumption:

Assumption A We assume that τβ ≤ 1 and τm ≥ 1.

3



The first part of Assumption A (τβ ≤ 1) means that agent B is more patient than

agent A. The second part (τm ≥ 1) states that the marginal rate of substitution between

state 2 now and state 1 in the next period is larger for agent A than for agent B.

Assumption A enables us to generate endogenous limited participation and a nontrivial

market structure. It implies that the AD security paying off in state 2 is always traded by

agent B, while the other AD security, paying off in state 1, is traded by agent A in state

2 and by agent B in state 1.We deduce that the matrix Q = (qij)i,j=1,2 of AD security

prices can be expressed as:

Q = βB

 π (1− π)
mB2
mB1

(1− ν)τm
mB1
mB2

ν

 . (3)

3 Using Perron-Frobenius theory to recover limited par-

ticipation

In contrast with the existing literature, we prove that the long-term return recovered by

PF from one-period AD security prices differs from the actual long-term return. Inter-

estingly, PF theory can be used to recover the severity of market segmentation and in

particular its determinants, τβ and τm.

We now consider AD securities paying off in n periods. The price in state i of an AD

security paying off in state j in n periods is denoted by q(n)
ij .

3.1 A preliminary lemma

To avoid discussing too many cases, we make the following assumption.
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Assumption B We assume that agents’ pricing kernels are such that:

m1
B ≥ m2

B,

(τm − 1) π ≥ ν(1− τβ),

(1− ν)(1− π) (τm − 1) ≥ ν2(1− τβ)τβ.

Assumption B is compatible with Assumption A and holds when the ratio mA1
mA2

is

sufficiently large, or when the ratio τβ is sufficiently close to one. This condition can be

interpreted as the fact that the heterogeneity caused by mk2
mk1

is “stronger” than that caused

by βk.

Assumption B looks complicated but is simply meant to generate a non-trivial mar-

ket structure for AD securities with maturity greater than 2 periods. The next lemma

summarizes the market structure implied by Assumption B.

Lemma 1 (Market structure) If Assumption B holds, for any AD security of maturity

n ≥ 2, agent A is the price-maker in state 2, while agent B is the price-maker in state 1.

Proof of Lemma 1, as all other proofs, can be found in Appendix. Assumption B

implies perfect market segmentation for AD securities with maturity greater than two

periods. Only agent A trades in state 2, while only agent B trades in state 1. The

market segmentation for securities with maturity greater than two periods differs from

the market arrangement observed for one-period AD securities. This difference in market

segmentation for AD securities with different maturities is key to explaining why limited

participation affects the long-term rate recovered using PF theory.

3.2 First dimension: Recovering τβ

We now state our first result relating to the impact of limited market participation on

long-term asset returns.
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Proposition 1 (Limited market participation) The actual long-term return ra∞ dif-

fers from the return recovered from one-period AD prices using PF theory, rPF∞ .

For any τm, the difference between the long-term returns, denoted by δr∞ = rPF∞ − ra∞,

is always nonpositive and increases with τβ. Furthermore:

• when τβ → 1, δr∞ → 0;

• when τβ → 0, δr∞ → ln

(
π+(π2+4(1−π)(1−ν)τm)

1
2

π+ν+((π−ν)2+4(1−π)(1−ν)τm)
1
2

)
< 0.

Proposition 1 shows that applying PF theory to one-period AD security prices fails to

yield an actual long-term return. More precisely, the proposition guarantees the existence

of a one-to-one relationship between dimension τβ of limited market participation and

the long-term return gap δr∞. The difference between actual and recovered returns thus

indirectly recovers dimension τβ of limited market participation.

The intuition for the Proposition 1 result can be explained by PF theory. The long-

term rate is usually characterized by the largest eigenvalue of the matrix of one-period

AD prices (here, Q); however, due to the market structure described in Lemma 1, this

does not hold in our economy. The long-term rate is determined by the largest eigenvalue

of another matrix, which differs from Q.

3.3 Second dimension: Recovering τm

We now take advantage of the long-term one-period expected holding returns (EHR,

henceforth) to recover the heterogeneity in τm. The price in state i of the n-period zero-

coupon bond is p(n)
i = q

(n)
i1 + q

(n)
i2 . The EHR r1,Π

i,(n) is defined as the expected return for

purchasing a n-period bond in state i and reselling it in one period as a (n − 1)-period

bond. More formally, we have:

r1,Π
i,(n) =

Πi1p
(n−1)
1 + Πi2p

(n−1)
2

p
(n)
i

.

The average EHR r1,Π
(n) is equal to the unconditional average of the state-dependent
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EHR:

r1,Π
(n) =

1− Π22

2− Π11 − Π22

r1,Π
1,(n) +

1− Π11

2− Π11 − Π22

r1,Π
2,(n).

We denote by r1
(n) the EHR when the transition probabilities are actual probabilities,

while r̃1
(n) corresponds to the EHR when the transition probabilities are recovered by PF

theory. We also denote by r1
∞ and r̃1

∞ their respective limits when the maturity n becomes

very long and converges to infinity. We now state the following proposition.

Proposition 2 (One-period holding return) The ratio of EHR, r̃1∞
r1∞

, is an increasing

function of τm. In particular, r̃1
∞ ≥ r1

∞.

Proposition 2 shows that the heterogeneity in τm widens the difference between the

EHRs under the recovered and actual probability measures. Moreover, the recovered EHR

is always greater than the actual EHR: the recovered probability puts greater weight on

larger returns than is actually the case. Finally, Proposition 2 mirrors Proposition 1 and

shows that EHRs can be used to recover dimension τm of agents’ heterogeneity, while

keeping the other dimension τβ unchanged.

3.4 Recovering the determinants of market segmentation

Propositions 1 and 2 have established partial invertibility results stating that the obser-

vation of either long-term returns or long-term one-period holding returns is sufficient to

recover one of the heterogeneity determinants τβ or τm. We now state a global invertibil-

ity result showing that observing both long-term returns and long-term EHR enables us

to jointly recover both determinants of market segmentation.

Proposition 3 (Recovering (τβ, τm)) For a given observation of long-term return dif-

ference rPF∞ − ra∞ and long-term EHR ratio r̃1∞
r1∞

, there is a unique pair (τβ, τm).

This result shows that the application of PF theory allows us to completely quan-

tify limited financial participation in our example economy. It generalizes the results of

Propositions 1 and 2 to the joint recovery of the determinants of market segmentation.
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4 Conclusion

We have shown that applying PF theory in a context of limited market participation

provides a distorted version of the long-term return. However, PF theory enables us to

recover the determinants of limited market participation and to understand the underlying

heterogeneity of market participants. To the best of our knowledge, this paper is the first

to illustrate the possible connection between PF and financial market structure. We leave

the exploration of the general theory of PF with limited participation for future research.
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Appendix

A Proof of Lemma 1

We introduce the two following notations:

QA=βB

 π (1− π)
mB2
mB1

(1− ν)
mB1
mB2
τm ντβ

 and QB =βB

 π (1− π)
mB2
mB1

(1− ν)
mB1
mB2

ν

. (4)

The matrix QA collects (possibly out-of-equilibrium) AD prices when B is price-maker in

state 1 and A price maker in state 2. Similarly, the matrix QB is the matrix of AD prices

when B is price-maker in both states. We prove that (QA − QB)Qn
AQ has only positive

elements for all n. Diagonalizing QA yields QA = EADAE
−1
A with:

DA = diag(K1(τβ, τm), K2(τβ, τm)),

EA = βB

 (1− π)
mB1
mB2

(1− π)
mB1
mB2

1
2

(
ντβ − π +

√
∆(τβ, τm)

)
1
2

(
ντβ − π −

√
∆(τβ, τm)

)
 ,

∆(τβ, τm) = (π − ντβ)2 + 4(1− π)(1− ν)τm,

Ki(τ
β, τm) =

βB

2

(
π + ντβ + (−1)i−1

√
∆(τβ, τm)

)
, i = 1, 2,

Dropping the dependence in (τβ, τm), we have (QA−QB)Qn
AQ =

 0 0

d1,n d2,n

, where:

mA1
mA2

d1,n

βAβB(1− ν)
=
(
(1− 1/τm) π − ν(1− τβ)

)
(λn+1

A,1 − λ
n+1
A,2 ) (5)

+ βA
(
(1− π)(1− ν)τβ (τm − 1)− νπ (1− 1/τm)

)
(λnA,1 − λnA,2),

d2,n

(βB)2
=
(
(1− ν)(1− π) (τm − 1)− νν(1− τβ)

)
(λn+1

A,1 − λ
n+1
A,2 ) (6)

+ ν(1− τβ) (ν + π − 1) βB(λnA,1 − λnA,2).
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Before going further, let us remark that:

λn+1
A,1 − λ

n+1
A,2 ≥ νβA(λnA,1 − λnA,2), (7)

≥ πβB(λnA,1 − λnA,2). (8)

Let us prove (7) (similar for (8)). Note that (i) λA,2 < λA,1 and (ii) 0 ≤ νβA ≤ λA,1.

First, since λA,1 > 0, (7) is equivalent to 1 − νβA

λA,1
≥ λnA,2

λnA,1
(
λA,2
λA,1
− νβA

λA,1
). The result holds

whenλA,2 ≥ 0 or when λA,2 < 0 and n is even. Now assume that n = 2m+1 and λA,2 < 0.

The sequence m 7→ λ2m+1
A,2

λ2m+1
A,1

(
λA,2
λA,1
− νβA

λA,1
) is positive and decreasing since

λ2A,2
λ2A,1
∈ [0, 1). We

conclude by proving that (7) holds form = 0. Indeed, it is equivalent to λA,1+λA,2 ≥ νβA,

which holds.

Now, using (5) and (7), d1,n becomes d1,n

βAβB(1−ν)(λnA,1−λ
n
A,2)βA

mA2
mA1

≥ (1−π)(1−ν) (τm − 1) /τβ−

ν2(1− τβ) ≥ 0, with Assumption B. Finally, we similarly prove that d2,n ≥ 0.

B Proof of Proposition 1

The largest eigenvalue of one-period AD securities is λQ = βB

2

(
π + ν + ∆1/2(1, τm)

)
.

However, due to Lemma 1, the long-term return of an AD security depends on λQA =

βB

2

(
π + ντβ + ∆1/2

)
. The actual long-term rate is thus ra∞ = − log(λQA), while the

recovered one is rPF∞ = − log(λQ). The difference is δr∞ = rPF∞ − ra∞ = log
(
λQA
λQ

)
, where:

λQA
λQ

=
π + ντβ +

(
(π − ντβ)2 + 4(1− π)(1− ν)τm

) 1
2

π + ν + ((π − ν)2 + 4(1− π)(1− ν)τm)
1
2

. (9)

We denote δr∞ as ϕ(τβ, τm), with:

∂ϕ(τβ, τm)

∂τβ
= −C ×

(
1− (π − ν/τβ)

(
(π − ν/τβ)2 + 4(1− π)(1− ν)τm

)− 1
2

)
, (10)

where C > 0. We deduce that δr∞ increases with τβ and since ϕ(1, τm) = 1, δr∞ ≤ 0.
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C Proof of Proposition 2

PF theory for AD prices in matrix Q of (3) implies that the recovered probability P̃ is

characterized by the transition matrix P̃ :

P̃ =

 π̃ 1− π̃

1− ν̃ ν̃

 , (11)

where: π̃ =
2π

π + ν +
√

∆1

, ν̃ =
2ν

π + ν +
√

∆1

, and ∆1 = ∆(1, τm). (12)

The price p(n)
i in state i = 1, 2 of a zero-coupon bond of maturity n periods is:

p
(n)
i = λn−1

QA

βB√
∆
ρi(1 + on(1)), i = 1, 2, (13)

ρ1 =
π − ντβ +

√
∆

2
π + (1− π)(1− ν)τm + (1− π)

mB
2

mB
1

π + ν(2− τβ) +
√

∆

2
, (14)

ρ2 =
−π + ντβ +

√
∆

2
ν + (1− π)(1− ν)τm + (1− ν)τm

mB
1

2mB
2

(
π + ντβ +

√
∆
)
, (15)

where on(1)→n→∞ 0. After some algebra, (14) becomes:

ρ1 =
1

2

(
−π + ντβ +

√
∆A

) mB
1

(1− π)mB
2

ρ2. (16)

We denote r1
(n) the one-period average EHR for a n-period bond under P, while r̃1

(n)

denotes the same return under P̃. Using (13), we obtain:

r1
(n) =

2

β((π + ν) +
√

∆)

(
1 +

(1− π)(1− ν)

2− π − ν
(ρ1 − ρ2)2

ρ1ρ2

)
+ on(1), (17)

r̃1
(n) =

2

β((π + ν) +
√

∆)

(
1 +

(1− π̃)(1− ν̃)

2− π̃ − ν̃
(ρ1 − ρ2)2

ρ1ρ2

)
+ on(1). (18)
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We deduce from (17) and (18)
r̃1
(n)

r1
(n)

= 1 + (1−π̃)(1−ν̃)
2−π̃−ν̃

(ρ1−ρ2)2

ρ1ρ2

/
1 + (1−π)(1−ν)

2−π−ν
(ρ1−ρ2)2

ρ1ρ2
, and:

r̃1
(n)

r1
(n)

= ψ(τm) =
1 + g(τm)f(τm)

1 + f(τm)
, (19)

where: g(τm) =
2(2− π − ν)τm√

∆(τm)(π + ν +
√

∆(τm))
, (20)

f(τm) =
(1− π)(1− ν)

2− π − ν

(
ρ1(τm)

ρ2(τm)
+
ρ2(τm)

ρ1(τm)
− 2

)
. (21)

Using (19) we have:

ψ′(τm) =
g′(τm)f(τm)(1 + f(τm)) + f ′(τm)(g(τm)− 1)

(1 + f(τm))2
. (22)

If g and f are increasing, we have g(τm) ≥ 1 for any τm ≥ 1 since g(1) = 1. Since g, f > 0,

(22) implies ψ′(τm) > 0 and ψ strictly increasing on [1,∞). This also implies ψ(τm) ≥ 1

and r̃1
(n) ≥ r1

(n).

We now show that g is increasing. From (20):

− ∂

∂τm
ln(g(τm)) =

∆′(τm)

2∆(τm)
+

∆′(τm)

2
√

∆(τm)(π + ν +
√

∆(τm))
− 1

τm
.

Eq. (12) yields − ∂
∂τm

ln(g(τm)) ≤ −(π−ν)2

τm∆(τm)
< 0, which implies that g is increasing.

We now consider the case of f . Using (16), we have:

f(τm) =
(1− π)(1− ν)

2− π − ν

(
f1(τm) +

1

f1(τm)
− 2

)
, (23)

where: f1(τm) =
1

2

(
−π + ν/τβ +

√
∆A

) mB
1

(1− π)mB
2

. (24)

Since f > 0, we deduce from (23) that the sign of f ′ is given by the sign of f ′1(τm)(f1(τm)2−

1). From (12) and (24), we deduce that f ′1(τm) > 0. This implies that f1(τm) ≥ 1 because

of Assumption B. We deduce that f is increasing, which concludes the proof.
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D Proof of Proposition 3

We assume that we observe the long-term return difference δr∞ and of long-term EHR

ratio
r̃1
(n)

r1
(n)

. From Propositions 1 and 2, we know that there exist a, b > 0 such that

δr∞ = e−b and
r̃1
(n)

r1
(n)

= eb. Using (9) and (19), a pair (τβ, τm) matches observed returns if:

ϕ(τβ, τm) = e−b,

ψ(τβ, τm) = ea.

(25)

We now prove that at most one pair (τβ, τm) solves (25). Substituting expressions of ϕ

and ψ, (25) is equivalent to:

π + ντβ + ∆(τβ, τm) = e−b (π + ν + ∆(1, τm)) ,

1+g(τm)f(τβ ,τm)
1+f(τβ ,τm)

= ea.

(26)

where f and f1 in (23) and (24) are generalized to two variables. Let us define f̂1(τm) =

1
2

(
e−b (π + ν + ∆(1, τm))− 2π

) mB1
(1−π)mB2

and f̂(τm) = (1−π)(1−ν)
2−π−ν

(
f̂1(τm) + 1

f̂1(τm)
− 2
)
. By

construction, f̂1 and f̂ are increasing functions. We deduce that (25) implies:

1 + g(τm)f̂(τm)

1 + f̂(τm)
= ea, (27)

where the left hand-side is increasing (same as for ψ defined in (19)). The solution τm of

(27) is thus unique (if exists). We also know from Proposition 1 that the solution in τβ

of ϕ(τβ, τm) = e−b for any τm is unique. Thus, the solution (τβ, τm) to (25) is unique.
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